Introduction to powder metallurgy processes for titanium manufacturing


  • P. G. Esteban Universidad Carlos III de Madrid
  • L. Bolzoni Universidad Carlos III de Madrid
  • E. M. Ruiz-Navas Universidad Carlos III de Madrid
  • E. Gordo Universidad Carlos III de Madrid



Titanium, Powder metallurgy, Titanium processing


The development of new extraction processes to produce titanium in powder form leads Powder Metallurgy to an advantage position among the manufacturing processes for titanium. The cost reduction of base material, coupled with the economy of the powder metallurgy processes, give titanium industry the chance to diversify its products, which could lead to production volumes able to stabilise the price of the metal. This work reviews some of the Powder Metallurgy techniques for the manufacturing of titanium parts, and describes the two typical approaches for titanium manufacturing: ‘Blending Elemental’ and ‘Prealloyed Powders’. Among others, conventional pressing and sintering are described, which are compared with cold and hot isostatic pressing techniques. Real and potential applications are described.


Download data is not yet available.


[1] Summary of Emerging Titanium Cost Reduction Technologies. A Study Performed for US Department of Energy and Oak Ridge National Laboratory. Subcontract 4000023694, EHKTechnologies (Eds.), Vancouver, EE.UU., 2004, pp. 5-28.

[2] R.A. Chernenkoff, W.F. Jandeska y J.C. Lynn, Low-cost powder metallurgy technology for particle- reinforced titanium automotive components: manufacturing process feasibility study, F.P. Report Automotive Lightweighting Materials, Contractor: U.S. Automotive Materials Partnership, 2004, pp. 57-60.

[3] C.A. Lavender, Low-cost titanium evaluation, F. P. Report, Automotive Lightweighting Materials, Contractor: Pacific Northwest National Laboratory, 2004, pp. 83-86.

[4] Opportunities for Low Cost Titanium in Reduced Fuel Consumption, Improved Emissions, and Enhanced Durability Heavy-Duty Vehicles. Subcontract 4000013062, EHKTechnologies (Eds.), Vancouver, EE.UU., 2002, pp. 12-43.

[5] M.J. Donachie, Titanium. A Technical Guide, Ed. ASM International, 1st ed., Ohio, EE.UU., 1988, pp. 9-16.

[6] D.M. Brunette, P. Tengvall, M. Textor y P. Thompsen, Titanium in medicine: Materials Science, Surface Science, Engineering, Biological Responses and Medical Applications, Ed. Springer, 1st ed., Heidelberg, Berlin, 2001, pp. 1-26.

[7] H.J. Rack y J.I. Qazi, Mat. Sci. Eng. C 26 (2006) 1.269-1.277.

[8] T. E. Norgate y G. Wellwood, Jom 58 (9) (2006) 58-63. doi:10.1007/s11837-006-0084-y

[9] K. Faller, SAE 2002 World Congress, Detroit, EE.UU., 2002, Society of Automotive Engineers (Eds.), Michigan, EE.UU., 2002, pp. 27-34.

[10] F.H. Froes, H. Friedrich, J. Kiese y D. Bergoint, Jom 56 (2) (2004) 40-44. doi:10.1007/s11837-004-0144-0

[11] T. Tetsui, Mat. Sci. Eng. A 329-331 (2002) 582-588. doi:10.1016/S0921-5093(01)01584-2

[12] E.J. Wall, R. Sullivan y J. Carpenter, Progress Report for Automotive Lightweighting Materials. Progress Report-FY 2006, vol. 1, U.S. Department of Energy (Eds.), Washington, EE.UU., 2007, pp. 98-109.

[13] E.J. Wall, R. Sullivan y J. Carpenter, Progress Report for Automotive Lightweighting Materials. Progress Report -FY2005, U.S. Department of Energy (Eds.), Washington, EE.UU, 2006, pp. 1-5.

[14] H. Friedrich, J. Kiese, H.G. Haldenwanger y A. Stich, Ti-2003 Science and Technlogy: Proceedings 10th World Conference on Titanium, Weinheim, Germany, Wiley VCH, Hamburg, Germany, 2004 pp. 3.393-3.402.

[15] P.X. Fu, X.H. Kang, Y.C. Ma, K. Liu, D.Z. Li e Y.Y. Li, Intermetall. 16 (2) (2008) 130-138. doi:10.1016/j.intermet.2007.08.007

[16] K. Gebauer, Intermetall. 14 (4) (2006) 355-360. doi:10.1016/j.intermet.2005.08.009

[17] M. Blum, G. Jarczyk, H. Scholz, S. Pleier, P. Busse, H.-J. Laudenberg, K. Segtrop y R. Simon, Mat. Sci. Eng. A 329-331 (2002) 616-620. doi:10.1016/S0921-5093(01)01513-1

[18] T. Noda, Intermetall. 6 (7-8) (1998) 709-713. doi:10.1016/S0966-9795(98)00060-0

[19] W.J. Kroll, Trans. Am. Electrochem. Soc. 78 (1940) 35-47. doi:10.1149/1.3071290

[20] S.J. Gerdemann, Adv. Mater. Process. 159 (7) (2001) 41-43.

[21] G. Crowley, Adv. Mater. Process. 161 (11) (2003) 25-27.

[22] K.S. Weil, Y. HovanskI y C.A. Lavender, J. Alloys Comp., 473 (1-2) (2009) L39-L43. doi:10.1016/j.jallcom.2008.06.097

[23] G.Z. Chen, D.J. Fray y T.W. Farthing, Nature 407 (361-364) (2000) 361. PMid:11014188

[24] M. Ma, D. Wang, W. Wang, X. Hu, X. Jin y G.Z. Chen, J. Alloys Comp. 420 (1-2) (2006) 37-45.

[25] A.J. Fenn, G. Cooley, D. Fray y L. Smith, Adv. Mater. Process. 162 (2004) 51-53.

[26] C. Yuyong, X. Shulong, T. Jing, K. Fantao y W. Huiguang, International Technology and Innovation Conference, ITIC 2006, Section I: Advanced Manufacturing Technology, Hangzhou, The Institution of Engineering and Technology (Eds.), China, 2006, pp. 439-442.

[27] R.I. Jaffee e I. E. Campbell, Trans. Am. Inst. Min. Metall. Eng. 185 (1949) 646-654.

[28] R.I. Jaffee, H.R. Ogden y D.J. Maykuth, Trans. Am. Inst. Min. Metall. Eng. 188 (1950) 1.261-1.266.

[29] F.C. Campbell, Manufacturing Technology for Aerospace Structural Materials, Ed. Elsevier, 1st ed., London, U.K., 2006, pp. 137-173.

[30] Y. Kosaka, S.P. Fox, K. Faller, S.H. Reichman y D. Tilly, Symposium on Cost Affordable Titanium, TMS Annual Meeting, Charlotte, North Carolina, EE.UU., 2004, F.H. Froes, M. Ashraf Imam, and Derek Fray (Eds.), EE.UU., pp. 77-84.

[31] C. Leyens y M. Peters, Titanium and Titanium Alloys. Fundamentals and Applications, Ed.Wiley-VCH, 1st ed., Weinheim, Germany, 2003, pp. 245-250.

[32] E. Nyberg, M. Miller, K. Simmons y K.S. Weil, Met. Powder Rep. 60 (10) (2005) 8-13. doi:10.1016/S0026-0657(05)70496-3

[33] E. Fukasawa, R. Murayama y W. Kagohashi, Titanium ‘92: Science and Technology, Vols. 1-3, San Diego, California, EE.UU., 1992, F.H. Froes, I.L. Caplan (Eds.), 1993, pp. 919-926.

[34] I. Park, T. Abiko y T.H. Okabe, J. Phys. Chem. Solids 66 (2005) (2-4) 410-413.

[35] F.H. Froes y D. Eylon, Inter. Mater. Rev. 35 (3) (1990) 162-182.

[36] D. Eylon, F.H. Froes y S.Abkovitz, Titanium powder metallurgy alloys and composites, ASM Metals Handbook Vol 7: Powder Metallurgy, Ed. ASM International, 9th Ed., Ohio, EE.UU., 1998, pp. 874-886.

[37] W. Schatt y K.P. Wieters, Powder Metallurgy: Processing and Materials, European Powder Metallurgy Association, (Eds), 1st ed., Shrewsbury, U.K., 1997, pp. 106-121.

[38] O.M. Ivasishin, V.M. Anokhin, A.N. Demidik y D.G. Savvakin, Development in Light Metals, Key Eng. Mater. vol 188, Ed. Trans Tech Publications, Switzerland, 2000, pp. 55-61.

[39] T. Saito, H. Takamiya y T. Furuta, Mat. Sci. Eng. A 243 (1998) 273-278. doi:10.1016/S0921-5093(97)00813-7

[40] M. Hagiwara y S. Emura, Progress in Powder Metallurgy, Mater. Sci. Forum, vol. 534-536, Ed. Trans Tech Publications, Switzerland (2007) pp. 777-780.

[41] V.A. Druz, V.S. Moxson, R. Chernenkoff, W.F. Jandeska JNR y J. Lynn, Met. Powder Rep. 61 (10) (2006) 16-21. doi:10.1016/S0026-0657(06)70736-6

[42] M. Hagiwara y S. Emura, Mat. Sci. Eng. A 352 (2003) 85-92. doi:10.1016/S0921-5093(02)00897-3

[43] T. Saito, Adv. Perform. Mater. 2 (2) (1995) 121-144. doi:10.1007/BF00711267

[44] S. Kuramoto, T. Furuta, J. Hwang, K. Nishino y T. Saito, Mat. Sci. Eng. A 442 (2006) 454-457. doi:10.1016/j.msea.2005.12.089

[45] G. Lütjering y J.C. Williams, Titanium. Engineering Materials and Processes, Ed. Springer, 1st ed., Berlin-Heidelberg, 2003, pp. 86-95.

[46] S. Abkowitz, S.M. Abkowitz, H. Fisher y P.J. Schwartz, Jom 56 (5) (2004) 37-41. doi:10.1007/s11837-004-0126-2

[47] V.S. Moxson y V.A. Duz, Process of direct powder rolling of blended elemental titanium alloys, titanium matrix composites, and titanium aluminides, US Patent No. US 7.311.873-B2, EE.UU., 2007.

[48] V.S. Moxson y E. Ivanov, Manufacture of fully dense sheets, strips and layered composites involves consolidating by hot pressing, hot rolling, hot isostatic pressing or hot extrusion, and additional sintering and/or annealing the preform, US Patent No. US, EE.UU., 2004.

[49] C.R.F. Azevedo, D. Rodrigues y F. Beneduce Neto, J. Alloys Comp. 353 (1-2) (2003) 217-227.

[50] O.N. Senkov y F.H. Froes, Int. J. Hydrogen Energy 24 (6) (1999) 565-576. doi:10.1016/S0360-3199(98)00112-8

[51] G. Wegmann, R. Gerling, F.P. Schimansky, H. Clemens y A. Bartels, Intermetall. 10 (5) (2002) 511-17. doi:10.1016/S0966-9795(02)00026-2

[52] T.M.T. Godfrey, A. Wisbey, P.S. Goodwin, K. Bagnall y C.M. Ward-Close, Mat. Sci. Eng. A 282 (2000) 240-250. doi:10.1016/S0921-5093(99)00699-1

[53] R.M. German, Powder injection moulding. Ed.Metal Powder Industries Federation, 1st ed., Princeton, New Jersey, EE.UU., 1990, pp. 3-19.

[54] F.H. Froes, Powder Metall. Met. Ceram. 46 (5-6) (2007) 303-310. doi:10.1007/s11106-007-0048-y

[55] B. Williams, Metal Powder Rep.58 (10) (2003) 30-30. doi:10.1016/S0026-0657(03)01034-8

[56] F.G. Arcella y F.H. Froes, Jom 52 (5) (2000) 28-30. doi:10.1007/s11837-000-0028-x

[57] D. H. Abbott y G. G. Arcella, Adv. Mater. Process. 153 (5) (1998) 29-30.

[58] I. Polmear, Light Alloys: From Traditional Alloys to Nanocrystals, 4th Edition, Butterworth- Heinemann, UK, 2006, pp. 1-28.

[59] J.C. Williams, Mat. Sci. Eng. A 263 (1999) 107-111. doi:10.1016/S0921-5093(98)01179-4

[60] P.J. Blau, B.C. Jolly, J.QU, W.H. Peter y C.A. Blue, Wear 263 (7-12) (2007) 1.202-1.211.

[61] Y. Kosaka, S.P. Fox, K. Faller y S.H. Reichman, Symposium on Cost Affordable Titanium, 2004 TMS Annual Meeting, F.H. Froes, M. Ashraf Imam, and Derek Fray (Eds.), EE.UU., 2004, pp. 69-76.

[62] R. Stringer, Metal Powder Rep. 64 (3) (2009) 8-9. doi:10.1016/S0026-0657(09)70073-6

[63] R. Felton, P. Imgrund, F. Petzoldt, V. Friederici, D. Busquets-Mataix, L. Reig, V. Amigó y J.A. Calero, Metal Powder Rep. 64 (3) (2009) 12-17. doi:10.1016/S0026-0657(09)70075-X

[64] M. Hull, Powder Metall. 47 (1) (2004) 12-14.

[65] J.W. Adams, W.N. Roy, V.A. Duz y V.S. Moxson, Low Cost Titanium Powder Metallurgy Components for Armor and Structural Applications, Titanium 2006, International Titanium association, San Diego, California, EE.UU., 2006.

[66] Y. Liu, L.F. Chen, H. P. Tang, C.T. Liu, B. Liu y B.Y. Huang, Mat. Sci. Eng. A 418 (2006) 25-35. doi:10.1016/j.msea.2005.10.057

[67] P.G. Esteban, E.M. Ruiz-Navas, L. Bolzoni y E. Gordo, Proceedings Euro PM2007 - Lightweight & Porous Materials, vol. 2, Toulouse, France, 2007, European Powder Metallurgy Association, Shrewsbury, UK, 2007, pp. 353-358.

[68] P.G. Esteban, E.M. Ruiz-Navas, L. Bolzoni y E.Gordo, Metal Powder Rep. 63 (4) (2008) 24-27. doi:10.1016/S0026-0657(09)70040-2

[69] O.M. Ivasishin, Mater. Forum 29 (2005) 1-8.

[70] P. García, Tesis Doctoral, Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química, Escuela Politécnica Superior, Universidad Carlos III de Madrid, 2009.

[71] Guide to Engineered Materials, Adv. Mater. Process. (2001) 148-150.




How to Cite

Esteban, P. G., Bolzoni, L., Ruiz-Navas, E. M., & Gordo, E. (2011). Introduction to powder metallurgy processes for titanium manufacturing. Revista De Metalurgia, 47(2), 169–187.