Coagulation of fines in fluorite froth flotation


  • P. E. Sarquís Instituto de Investigaciones Mineras, Facultad de Ingeniería. Universidad Nacional de San Juan
  • M. González Instituto de Investigaciones Mineras, Facultad de Ingeniería. Universidad Nacional de San Juan
  • A. Moyano Instituto de Investigaciones Mineras, Facultad de Ingeniería. Universidad Nacional de San Juan
  • V. Bazán CONICET, Instituto de Investigaciones Mineras, Facultad de Ingeniería, Universidad Nacional de San Juan



Flotation, Fluorite, Reagents, Slimes, Coagulation


Fluorite, a valuable mineral in the metallurgical industry, can be found together with silicates, carbonates and oxides in ore deposits. Commercial concentrates with more than 95 % of CaF2 are obtained processing the mineral in flotation plants and using oleic acid as fluorite collector. Depressor reagents such as sodium silicate, tannin and sodium carbonate are commonly employed to allow the oleic acid selective performance. These reagents cause a dispersant effect separating the solid-liquid solution on tailing plants. Fine particles in the recovered water enter the circuit and affect the flotation efficiency. The effect of coagulant ions was studied as a method to clarify the returned water. The problem of the presence of these ions is related to its reactions with the collector by the formation of compounds and possibly on the selectivity. Variable quantities of Al3+, Fe3+ and Ca2+ ions were added to the flotation to evaluate its effect on the fluorite recovery, in the selectivity and in solids content in recirculation water. Results show that some ions fail to improve water quality and are detrimental to flotation. On the contrary, some ions contribute to reduce fine content in suspension. Therefore, although there is a recovery reduction, such effect can be counteracted increasing the collector consumption a little.


Download data is not yet available.


[1] D.R. Nagaraj, Minerals recovery and processing, Ed. Kirk Othmer, Separation Technology, 2nd Edition, EE.UU., 2008, pp. 659-732.

[2] A. Peck, U.S. Bureau of Mines, RI 6202, 1964, pp. 14-16.

[3] K. Marinakis y H. Shergold, Int. J. Miner. Process. 14 (1985) 161-176.

[4] W. Thomas, Mining Chemical Handbook, Ed. Cyted, EE.UU., 2002, pp. 69-130.

[5] R.K. Hanumantha y K. Forssberg, Miner. Eng. 4 (1991) 879-890.

[6] S. K. Mishra, Int. J. Miner. Process. 9 (1982) 59-73.

[7] W. Sampaio y C. Ferreira, VII Meeting of the Southern Hemisphere on mineral Technology, Ouro Preto, Minas Gerais, Brazil, 2007, pp. 243-251.

[8] H. Schubert, H. Baldauf y W. Kramer, Int. J. Miner. Process. 30 (1990) 185-193.

[9] Y. Zhang y S. Song, Miner. Eng. 16 (2003) 597-600.

[10] P. Sarquís, V. Bazán, Universidad Nacional de San Juan, Informe IIM-023-08. Ed. FUNSJ, UNSJ, Argentina, 2008, pp. 8-11.

[11] J.D. Millar y J.B and Hiskey, Colloid Interface Sci. 41 (1972) 567-573.

[12] M.C. Fuerstenau, G. Gutiérrez y D. Elgillani, Trans. AIME, 242 (1968) 319-320.

[13] G.V. Caesar, Starch and its derivates, Edit. J.A. Radley. Chapman and Hall, London, Inglaterra, 1968, pp. 221-223.

[14] J. Wang y P. Samasundaran, Miner. Eng, 18(2005) 77-81.

[15] M.J. Pearse, Miner. Eng. 18 (2005) 139-149.

[16] S.H. Chiang, Fluid Part. Separ. J. 6 (1993) 64.

[17] P. Somasundaran, Fine Particle Processing, AIME, Vol. 2, New York, EE.UU., 1980, pp. 947

[18] S. Chandler y H. Sis, Miner. Eng. 16 (2003) 577-585.

[19] H. Yuehua y R. Chi, Ind. Eng. Chem. Res. 42 (2003) 1641-1647.

[20] S.V. Dudenhov, Tsvet. Metallurgy 40 (1967) 18-21.

[21] V. A. Mokrousov, Gorny Zhurna 1 (1945) 30-33.




How to Cite

Sarquís, P. E., González, M., Moyano, A., & Bazán, V. (2011). Coagulation of fines in fluorite froth flotation. Revista De Metalurgia, 47(3), 205–211.




Most read articles by the same author(s)