BIO-PCI, Charcoal injection in Blast Furnaces: State of the art and economic perspectives


  • C. Feliciano-Bruzual Macquarie Graduate School of Management, Macquarie University
  • J. A. Mathews Eni Chair of Competitive Dynamics and Global Strategy, LUISS Guido Carli University



Bio-PCI, Charcoal, Pulverized Carbon Injection (PCI), Residual biomass


The injection of grinded particles of charcoal through the tuyeres in Blast Furnaces, here coined Bio-PCI, presents as an attractive and plausible alternative to significantly reduce the CO2 emissions generated during hot metal production. In this contribution a summary of the technological fundaments, benefits and limitations of the incorporation of Bio-PCI is presented. Additionally the principal economic challenges of renewables fuel in ironmaking are exposed, with especial interest in the main productions costs of charcoal making. In this sense, a strategic question arises: can the residual biomass drive the emergence of Bio-PCI?, our analysis leads to conclude that the use of residual biomass (e.g. agricultural and forestry residues) may significantly reduce the production cost in 120-180 USD/t in comparison to primary woods sources, this naturally increment the economical attractiveness of Bio-PCI substitution.


Download data is not yet available.


[1] Boston Consulting Group, Proceedings SEAISI Conference 2009, Kuala Lumpur, Malaysia, 2009.

[2] M. Larsson, Doctoral Thesis, Lulea University of Technology, 2004.

[3] P. Schmoele, H.B. Lüngen, G. Endemann, Proceedings 5th ICSTI'09, Shanghai, China, 2009, pp. 42-50.

[4] A. Cheng, F. Rorick and J. Poveromo, Fifht Inter. Congress "Theory and Technology of Blast-Furnace Smelting", Shanghai, China, 2008, pp. 27-41.

[5] I.F. Kurunov,Metallurgist 54 (2010) 114-126.

[6] A. Babich, D. Senk, H.W. Gudenau and K. Mavrommatis, Ironmaking, Ed. RWTH Aachen University, Aachen, Alemania, 2008.

[7] R.C. Gupta, Mineral Processing and Extractive Metallurgy Review, 24 (2003) 203-231.

[8] A. Oliveira Carneiro, Technological advances of charcoal production. Course: Charcoal Ironmaking, Brazil. Unpublished.

[9] R. Nascimento, A. Almeida, E. Olivera, A. De Jesus and A. De Moraes, Proc. 3rd Inter. Meeting on Ironmaking, 2008, pp. 1-14.

[10] S. Ueda, K. Watanabe, K. Yanagiya, R. Inoue and T. Ariyama, ISIJ International 49 (2009) 1505-1512.

[11] K. Matsui, Y. Hata, S. Hosokai, J. Hayashi, Y. Kashiwaya, and T. Akiyama, Proc. 5th ICSTI'09, Shanghai, China. 2009, pp.1292- 1296.

[12] J.A. MacPhee, J.F. Gransden, L. Giroux and J.T. Price, Fuel Processing Technology 90 (2009) 16-20.

[13] J. Mathieson, H. Rogers, M. Somerville, P. Ridgeway, S. Jahanshahi, METEC InSteelCon 2011, Du.sseldorf, Germany, 2011.

[14] M.A. Somerville, M. Davies, J.G. Mathieson, P. Ridgeway and S. Jahanshahi, CHEMECA Sydney, Australia, 2011, pp. 1-13.

[15] M. Somerville, S. Jahanshahi, P. Ridgeway, M. Davies and J.G. Mathieson, Sustainable Mining 2010 Conference, Kalgoorlie, Western Australia State (WA), 2010.

[16] D. Lucena, R. Medeiros, U. Fonseca and P. Assis, Tecnologia em Metalurgia e Materiais 4 (2008) 1-6.

[17] A. Babich, D. Senk and M. Fernández, ISIJ International 50 (2010) 81-88.

[18] S. Ueda, K. Yanagiya, R. Inoue and T. Ariyama, ASIA STEEL 2009, 4thAsia Steel International Conference, Busan, Kora, 2009.

[19] S. Ueda, T. Ariyama, SCANMET III, 3rd Int. Conference on Process Development in Iron and Steelmaking, Luleå, Sweden, 2008.

[20] J.G. Mathieson, The value-in-use of some biomass-derived blast furnace injectants, BlueScope Steel Unrestricted Report, 2007.

[21] J. Machado, E. Osorio, A. Vilela, A. Babich, H. Gudenau and D. Senk, Proceedings of the 5th ICSTI 2009, Shanghai, China, 2009, pp. 804-808.

[22] S. Ueda, K. Watanabe, K. Yanagiya, R. Inoue and T. Ariyama, Proc. of the 5th ICSTI'09, Shanghai, China, 2009, pp. 593-599.

[23] Clean Development Mechanism, Project documentation form: Usipar Pulveized Charcoal Injection Projection, 2008.

[24] T. Norgate and D. Langberg, ISIJ International 49 (2009) 587-595.

[25] F. Hanrot, D.Sert, J. Delinchant, R. Pietruck, T. Bu.rgler, A. Babich, M. Fernández, R. Alvarez and M.A. Diez, 1st Spanish Conference on Advances in Materials Recycling and EcoEnergy, Madrid, 2009.

[26] C. Feliciano, J.A. Mathew, 6th Int. Congress on the Science and Technology of Ironmaking – ICSTI, Rio de Janeiro, Brazil, 2012, pp. 1913- 1927.

[27] FAO, Unasylva No. 72, Use of charcoal in blast furnace operations, [retrieved on 02-2012]

[28] H. Nogami, J. Yagi and R. Sampaio, ISIJ International 44 (2004) 1205-1219.

[29] M.J. Antal and M. Gronli, Ind. Eng. Chem. Res. 42 (2003) 1619-1640.

[30] O.C. Ferreira, Economy & Energy 20 (2000).

[31] FAO Forestry Paper 63, Industrial charcoal making, Chapter 7,

[32] M. García-Pérez, T. Lewis and C.E. Kruger, Methods for producing biochar and advanced biofuels in Washington State.Washington State University, Pullman, WA, 2010, p. 137.

[33] H. Suopajärvi and M. Angerman, METEC Conference on Energy Efficiency and CO2 reduction in the Steel Industry, Du.sseldorf, Alemania, 2011.

[34] S. Kumar, comeback-despite-tough-economy.

[35] IEA, 2011, Technology Roadmap, Biofuels for Transport, International Energy Agency,

[36] A. Ranses K. Hanson and H. Shapouri, Biomass Bioenergy 15 (1998) 417-422.

[37] D.J.A. Johansson and C. Azar, Climate Change 82 (2007) 267-291.

[38] M. Wise, K. Calvin, A. Thomson, L. Clarke and B. Bond-Lamberty, R. Sands, S.J. Smith, A. Janetos and J. Edmonds, Science 324 (2009) 1183-1189.

[39] Worldsteel Association, World steel in figures 2012,

[40] J.S. Gregg and S.J. Smith, Mitigation and Adaptation Strategies for Global Change 15 (2010) 241-262.

[41] C. Feliciano, F. García and J.A. Mathews, Baosteel Technical Research (2010).




How to Cite

Feliciano-Bruzual, C., & Mathews, J. A. (2013). BIO-PCI, Charcoal injection in Blast Furnaces: State of the art and economic perspectives. Revista De Metalurgia, 49(6), 458–468.