Non-isothermal kinetics of the thermal desorption of mercury from a contaminated soil
DOI:
https://doi.org/10.3989/revmetalm.001Keywords:
Contaminated soils, DSC, Kinetic, Mercury, Thermal desorptionAbstract
The Almadén mining district (Ciudad Real, Spain) was the largest cinnabar (mercury sulphide) mine in the world. Its soils have high levels of mercury a consequence of its natural lithology, but often made much worse by its mining history. The present work examines the thermal desorption of two contaminated soils from the Almadén area under non-isothermal conditions in a N2 atmosphere, using differential scanning calorimetry (DSC). DSC was performed at different heating rates between room temperature and 600 °C. Desorption temperatures for different mercury species were determined. The Friedman, Flynn-Wall-Ozawa and Coasts–Redfern methods were employed to determine the reaction kinetics from the DSC data. The activation energy and pre-exponential factor for mercury desorption were calculated.
Downloads
References
Aboulkas, A., El Harfi, K., El Bouadili, A. 2010. Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms. Energ. Convers. Manage. 51 (7), 1363–1369. http://dx.doi.org/10.1016/j.enconman.2009.12.017
Adriano, D.C. 2001. Chapter 11. Mercury. Trace Elements in the Terrestrial Environments. 2nd Edition ed. New York: Springer; 2001. pp. 411–458.
Biester, H., Gosar, M., Covelli, S. 2000. Mercury speciation in sediments affected by dumped mining residues in the drainage area of the Idrija mercury mine, Slovenia. Environ. Sci. Technol. 34 (16), 3330–3336. http://dx.doi.org/10.1021/es991334v
Coats, A.W., Redfern, J.P. 1964. Kinetic parameters from thermogravimetric data. Nature 201 (491), 68–70. http://dx.doi.org/10.1038/201068a0
Chang, T.C., Yen, J.H. 2006. On-site mercury-contaminated soilsremediation by using thermal desorption technology. J. Hazard. Mater. 128 (2–3), 208–217. http://dx.doi.org/10.1016/j.jhazmat.2005.07.053
Doyle, C.D. 1961. Kinetic analysis of thermogravimetric data. J. Appl. Polym. Sci. 5 (15), 285–292. http://dx.doi.org/10.1002/app.1961.070051506
Egler, S.G., Rodrigues, S., Villas-Boas, R.C., Beinhoff, C. 2006. Evaluation of mercury pollution in cultivated and wild plants from two small communities of the Tapajo's gold mining reserve, Para State, Brazil. Sci. Total. Environ. 368 (1), 424–433. http://dx.doi.org/10.1016/j.scitotenv.2005.09.037
Fitzgerald, W.F., Lamborg, C.H. 2003. Treatise on Geochemistry, Ed. Elsevier, Oxford (UK), pp. 107–148.
Flynn, J.H., Wall, L.A. 1996. A quick direct method for determination of activation energy from thermogravimetric data. J. Polym. Sci. Pol. Lett. 4 (5PB), 323–327.
Friedman, H.L. 1964. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Applications to phenolic plastic. J. Polym. Sci. Pol. Sym. (6PC), 183–195.
Gaona Martínez, X. 2004. El mercurio como contaminante global. Desarrollo de metodologías para su determinación en suelos contaminados y estrategias para la reducción de su liberación al medio ambiente. Barcelona, Universidad Autónoma de Barcelona.
Gochfeld, M. 2003. Cases of mercury exposure, bioavailability, and absorption. Ecotoxicol. Environ. Saf. 56 (1), 174–179. http://dx.doi.org/10.1016/S0147-6513(03)00060-5
Higueras, P., Oyarzun, R., Biester, H., Lillo, J., Lorenzo, S. 2003. A first insight into mercury distribution and speciation in soils from the Almaden mining district, Spain. J. Geochem. Explor. 80 (1), 95–104. http://dx.doi.org/10.1016/S0375-6742(03)00185-7
Hylander, L.D., Meili, M. 2003. 500 years of mercury production: global annual inventory by region until 2000 and associated emissions. Sci. Total. Environ. 304 (1–3), 13–27. http://dx.doi.org/10.1016/S0048-9697(02)00553-3
Karathanasis, A.D., Harris, W.G. 1994. Quantitative Methods in Soil Mineralogy, Ed. Soil Science Society of America, Madison WI, pp. 360–411.
Kunkel, A.M., Seibert, J.J., Elliott, L.J., Kelley, R., Katz, L.E., Pope, G.A. 2006. Remediation of elemental mercury using in situ thermal desorption (ISTD). Environ. Sci. Technol. 40 (7), 2384–2389. http://dx.doi.org/10.1021/es0503581
L'Vov, B.V., Ugolkov, V.L., Grekov, F.F. 2004. Kinetics and mechanism of free-surface vaporization of zinc, cadmium and mercury oxides analyzed by the third-law method. Thermochim. Acta. 411 (2), 187–193. http://dx.doi.org/10.1016/j.tca.2003.08.024
Liu, G.L., Cabrera, J., Allen, M., Cai, Y. 2006. Mercury characterization in a soil sample collected nearby the DOE Oak Ridge Reservation utilizing sequential extraction and thermal desorption method. Sci. Total. Environ. 369 (1–3), 384–392. http://dx.doi.org/10.1016/j.scitotenv.2006.07.011
Lopez-Anton, M.A., Yuan, Y., Perry, R., Maroto-Valer, M.M. 2010. Analysis of mercury species present during coal combustion by thermal desorption. Fuel. 89 (3), 629–634. http://dx.doi.org/10.1016/j.fuel.2009.08.034
López-Delgado, A., López, F.A., Alguacil, F.J., Padilla, I., Guerrero, A. 2012a. A microencapsulation process of liquid mercury by sulfur polymer stabilization/solidification technology. Part I: Characterization of Materials. Rev. Metal. 48 (1), 45–57. http://dx.doi.org/10.3989/revmetalm.1133
López-Delgado, A., Guerrero, A., López, F.A., Pérez, C., Alguacil, F.J. 2012b. A microencapsulation process of liquid mercury by sulfur polymer stabilization/solidification technology. Part II: Durability of Materials. Rev. Metal. 48 (1), 58–66. http://dx.doi.org/10.3989/revmetalm.1137
Loveday, J., Beatty, H.J., Norris, J.M. 1972. Comparison of current chemical methods for evaluating irrigation soils. CSIRO Australia, Division of Soils, Technical Paper 14.
MAPA. 1994. Métodos oficiales de Análisis: Tomo III. (Ministerio de Agricultura, Pesca y Alimentación). Madrid (Spain): Secretaría General Técnica.
Millan, R., Gamarra, R., Schmid, T., Sierra, M.J., Quejido, A.J., Sanchez, D.M., Cardona, A.I., Fernandez, A., Vera, R. 2006. Mercury content in vegetation and soils of the Almaden mining area (Spain). Sci. Total. Environ. 368 (1), 79–87. http://dx.doi.org/10.1016/j.scitotenv.2005.09.096
Millan, R., Schmid, T., Sierra, M.J., Carrasco-Gil, S., Villadoniga, M., Rico, C., Ledesma, D.M.S., Puente, F.J.D. 2011. Spatial variation of biological and pedological properties in an area affected by a metallurgical mercury plant: Almadenejos (Spain). Appl. Geochem. 26 (2), 174–181. http://dx.doi.org/10.1016/j.apgeochem.2010.11.016
Ozaki, M., Uddin, M.A., Sasaoka, E., Wu, S.J. 2008. Temperature programmed decomposition desorption of the mercury species over spent iron-based sorbents for mercury removal from coal derived fuel gas. Fuel. 87 (17–18), 3610–3615. http://dx.doi.org/10.1016/j.fuel.2008.06.011
Ozawa, T., 1965. A new method of analizing thermogravimetric data. Bull. Chem. Soc. Jpn. 38 (11), 1881–1884. http://dx.doi.org/10.1246/bcsj.38.1881
Page, A.L., Miller, R.H., Heeney, D.R. 1987. Methods of soil analysis. Part 2. Chemical and microbiological properties.Ed. American Society of Agronomy, Soil Science Society of America. Madison, Wisconsin (USA).
Paruchuri, Y., Siuniak, A., Johnson, N., Levin, E., Mitchell, K., Goodrich, J.M., Renne, E.P., Basu, N. 2010. Occupational and environmental mercury exposure among small-scale gold miners in the Talensi-Nabdam District of Ghana's Upper East region. Sci. Total. Environ. 408 (24), 6079–6085. http://dx.doi.org/10.1016/j.scitotenv.2010.08.022
Plante, A.F., Fernández, J.M., Leifeld, J. 2009. Application of thermal analysis techniques in soil science. Geoderma. 153 (1–2), 1–10. http://dx.doi.org/10.1016/j.geoderma.2009.08.016
Salgado, J., González, M.I., Armada, J., Paz-Andrade, M.I., Carballas, M., Carballas, T. 1995. Loss of organic matter in Atlantic forest soils due to wildfires. Calculation of the ignition temperature. Thermochim. Acta. 259 (1), 165–175. http://dx.doi.org/10.1016/0040-6031(95)02274-6
Salgado, J., Mato, M.M., Vázquez-Gali-anes, A., Paz-Andrade, M.I., Carballas, T. 2004. Comparison of two calorimetric methods to determine the loss of organic matter in Galician soils (NW Spain) due to forest wildfires. Thermochim. Acta. 410 (1–2), 141–148. http://dx.doi.org/10.1016/S0040-6031(03)00400-3
Skyllberg, U., Bloom, P.R., Qian, J., Lin, C.M., Bleam, W.F. 2006. Complexation of mercury(II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups. Environ. Sci. Technol. 40 (13), 4174–4180. http://dx.doi.org/10.1021/es0600577
Stein, E.D., Cohen, Y., Winer, A.M. 1996. Environmental distribution and transformation of mercury compounds. Crit. Rev. Environ. Sci. Technol. 26 (1), 1–43. http://dx.doi.org/10.1080/10643389609388485
USEPA. 1996. Method 3052. Washington D.C.: EPA Office of Solid Waste.
USEPA. 2008. Land disposal restrictions: Regulations for mercury-containing non waste waters. R 40CFR Part 273.
Vyazovkin, S. 2001. Modification of the integral isoconversional method to account for variation in the activation energy. J. Comput. Chem. 22 (2), 178–183. http://dx.doi.org/10.1002/1096-987X(20010130)22:2<178::AID-JCC5>3.0.CO;2-#
Wang, J.X., Feng, X.B., Anderson, C.W.N., Xing, Y., Shang, L.H. 2012. Remediation of mercury contaminated sites - A review. J. Hazard. Mater. 221, 1–18.
Windmoller, C.C., Wilken, R.D., Jardim, W.D. 1996. Mercury speciation in contaminated soils by thermal release analysis. Water. Air. Soil. Poll. 89 (3–4), 399–416.Aboulkas, A., El Harfi, K., El Bouadili, A. 2010. Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms. Energ. Convers. Manage. 51 (7), 1363–1369.
Adriano, D.C. 2001. Chapter 11. Mercury. Trace Elements in the Terrestrial Environments. 2nd Edition ed. New York: Springer; 2001. pp. 411–458.
Biester, H., Gosar, M., Covelli, S. 2000. Mercury speciation in sediments affected by dumped mining residues in the drainage area of the Idrija mercury mine, Slovenia. Environ. Sci. Technol. 34 (16), 3330–3336. http://dx.doi.org/10.1021/es991334v
Coats, A.W., Redfern, J.P. 1964. Kinetic parameters from thermogravimetric data. Nature 201 (491), 68–70. http://dx.doi.org/10.1038/201068a0
Chang, T.C., Yen, J.H. 2006. On-site mercury-contaminated soilsremediation by using thermal desorption technology. J. Hazard. Mater. 128 (2–3), 208–217. http://dx.doi.org/10.1016/j.jhazmat.2005.07.053
Doyle, C.D. 1961. Kinetic analysis of thermogravimetric data. J. Appl. Polym. Sci. 5 (15), 285–292. http://dx.doi.org/10.1002/app.1961.070051506
Egler, S.G., Rodrigues, S., Villas-Boas, R.C., Beinhoff, C. 2006. Evaluation of mercury pollution in cultivated and wild plants from two small communities of the Tapajo's gold mining reserve, Para State, Brazil. Sci. Total. Environ. 368 (1), 424–433. http://dx.doi.org/10.1016/j.scitotenv.2005.09.037
Fitzgerald, W.F., Lamborg, C.H. 2003. Treatise on Geochemistry, Ed. Elsevier, Oxford (UK), pp. 107–148.
Flynn, J.H., Wall, L.A. 1996. A quick direct method for determination of activation energy from thermogravimetric data. J. Polym. Sci. Pol. Lett. 4 (5PB), 323–327.
Friedman, H.L. 1964. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Applications to phenolic plastic. J. Polym. Sci. Pol. Sym. (6PC), 183–195.
Gaona Martínez, X. 2004. El mercurio como contaminante global. Desarrollo de metodologías para su determinación en suelos contaminados y estrategias para la reducción de su liberación al medio ambiente. Barcelona, Universidad Autónoma de Barcelona.
Gochfeld, M. 2003. Cases of mercury exposure, bioavailability, and absorption. Ecotoxicol. Environ. Saf. 56 (1), 174–179. http://dx.doi.org/10.1016/S0147-6513(03)00060-5
Higueras, P., Oyarzun, R., Biester, H., Lillo, J., Lorenzo, S. 2003. A first insight into mercury distribution and speciation in soils from the Almaden mining district, Spain. J. Geochem. Explor. 80 (1), 95–104. http://dx.doi.org/10.1016/S0375-6742(03)00185-7
Hylander, L.D., Meili, M. 2003. 500 years of mercury production: global annual inventory by region until 2000 and associated emissions. Sci. Total. Environ. 304 (1–3), 13–27. http://dx.doi.org/10.1016/S0048-9697(02)00553-3
Karathanasis, A.D., Harris, W.G. 1994. Quantitative Methods in Soil Mineralogy, Ed. Soil Science Society of America, Madison WI, pp. 360–411.
Kunkel, A.M., Seibert, J.J., Elliott, L.J., Kelley, R., Katz, L.E., Pope, G.A. 2006. Remediation of elemental mercury using in situ thermal desorption (ISTD). Environ. Sci. Technol. 40 (7), 2384–2389. http://dx.doi.org/10.1021/es0503581
L'Vov, B.V., Ugolkov, V.L., Grekov, F.F. 2004. Kinetics and mechanism of free-surface vaporization of zinc, cadmium and mercury oxides analyzed by the third-law method. Thermochim. Acta. 411 (2), 187–193. http://dx.doi.org/10.1016/j.tca.2003.08.024
Liu, G.L., Cabrera, J., Allen, M., Cai, Y. 2006. Mercury characterization in a soil sample collected nearby the DOE Oak Ridge Reservation utilizing sequential extraction and thermal desorption method. Sci. Total. Environ. 369 (1–3), 384–392. http://dx.doi.org/10.1016/j.scitotenv.2006.07.011
Lopez-Anton, M.A., Yuan, Y., Perry, R., Maroto-Valer, M.M. 2010. Analysis of mercury species present during coal combustion by thermal desorption. Fuel. 89 (3), 629–634. http://dx.doi.org/10.1016/j.fuel.2009.08.034
López-Delgado, A., López, F.A., Alguacil, F.J., Padilla, I., Guerrero, A. 2012a. A microencapsulation process of liquid mercury by sulfur polymer stabilization/solidification technology. Part I: Characterization of Materials. Rev. Metal. 48 (1), 45–57. http://dx.doi.org/10.3989/revmetalm.1133
López-Delgado, A., Guerrero, A., López, F.A., Pérez, C., Alguacil, F.J. 2012b. A microencapsulation process of liquid mercury by sulfur polymer stabilization/solidification technology. Part II: Durability of Materials. Rev. Metal. 48 (1), 58–66. http://dx.doi.org/10.3989/revmetalm.1137
Loveday, J., Beatty, H.J., Norris, J.M. 1972. Comparison of current chemical methods for evaluating irrigation soils. CSIRO Australia, Division of Soils, Technical Paper 14.
MAPA. 1994. Métodos oficiales de Análisis: Tomo III. (Ministerio de Agricultura, Pesca y Alimentación). Madrid (Spain): Secretaría General Técnica.
Millan, R., Gamarra, R., Schmid, T., Sierra, M.J., Quejido, A.J., Sanchez, D.M., Cardona, A.I., Fernandez, A., Vera, R. 2006. Mercury content in vegetation and soils of the Almaden mining area (Spain). Sci. Total. Environ. 368 (1), 79–87. http://dx.doi.org/10.1016/j.scitotenv.2005.09.096
Millan, R., Schmid, T., Sierra, M.J., Carrasco-Gil, S., Villadoniga, M., Rico, C., Ledesma, D.M.S., Puente, F.J.D. 2011. Spatial variation of biological and pedological properties in an area affected by a metallurgical mercury plant: Almadenejos (Spain). Appl. Geochem. 26 (2), 174–181. http://dx.doi.org/10.1016/j.apgeochem.2010.11.016
Ozaki, M., Uddin, M.A., Sasaoka, E., Wu, S.J. 2008. Temperature programmed decomposition desorption of the mercury species over spent iron-based sorbents for mercury removal from coal derived fuel gas. Fuel. 87 (17–18), 3610–3615. http://dx.doi.org/10.1016/j.fuel.2008.06.011
Ozawa, T., 1965. A new method of analizing thermogravimetric data. Bull. Chem. Soc. Jpn. 38 (11), 1881–1884. http://dx.doi.org/10.1246/bcsj.38.1881
Page, A.L., Miller, R.H., Heeney, D.R. 1987. Methods of soil analysis. Part 2. Chemical and microbiological properties.Ed. American Society of Agronomy, Soil Science Society of America. Madison, Wisconsin (USA).
Paruchuri, Y., Siuniak, A., Johnson, N., Levin, E., Mitchell, K., Goodrich, J.M., Renne, E.P., Basu, N. 2010. Occupational and environmental mercury exposure among small-scale gold miners in the Talensi-Nabdam District of Ghana's Upper East region. Sci. Total. Environ. 408 (24), 6079–6085. http://dx.doi.org/10.1016/j.scitotenv.2010.08.022
Plante, A.F., Fernández, J.M., Leifeld, J. 2009. Application of thermal analysis techniques in soil science. Geoderma. 153 (1–2), 1–10. http://dx.doi.org/10.1016/j.geoderma.2009.08.016
Salgado, J., González, M.I., Armada, J., Paz-Andrade, M.I., Carballas, M., Carballas, T. 1995. Loss of organic matter in Atlantic forest soils due to wildfires. Calculation of the ignition temperature. Thermochim. Acta. 259 (1), 165–175. http://dx.doi.org/10.1016/0040-6031(95)02274-6
Salgado, J., Mato, M.M., Vázquez-Gali-anes, A., Paz-Andrade, M.I., Carballas, T. 2004. Comparison of two calorimetric methods to determine the loss of organic matter in Galician soils (NW Spain) due to forest wildfires. Thermochim. Acta. 410 (1–2), 141–148. http://dx.doi.org/10.1016/S0040-6031(03)00400-3
Skyllberg, U., Bloom, P.R., Qian, J., Lin, C.M., Bleam, W.F. 2006. Complexation of mercury(II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups. Environ. Sci. Technol. 40 (13), 4174–4180. http://dx.doi.org/10.1021/es0600577
Stein, E.D., Cohen, Y., Winer, A.M. 1996. Environmental distribution and transformation of mercury compounds. Crit. Rev. Environ. Sci. Technol. 26 (1), 1–43. http://dx.doi.org/10.1080/10643389609388485
USEPA. 1996. Method 3052. Washington D.C.: EPA Office of Solid Waste.
USEPA. 2008. Land disposal restrictions: Regulations for mercury-containing non waste waters. R 40CFR Part 273.
Vyazovkin, S. 2001. Modification of the integral isoconversional method to account for variation in the activation energy. J. Comput. Chem. 22 (2), 178–183. http://dx.doi.org/10.1002/1096-987X(20010130)22:2<178::AID-JCC5>3.0.CO;2-#
Wang, J.X., Feng, X.B., Anderson, C.W.N., Xing, Y., Shang, L.H. 2012. Remediation of mercury contaminated sites - A review. J. Hazard. Mater. 221, 1–18.
Windmoller, C.C., Wilken, R.D., Jardim, W.D. 1996. Mercury speciation in contaminated soils by thermal release analysis. Water. Air. Soil. Poll. 89 (3–4), 399–416. http://dx.doi.org/10.1007/BF00171644
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.