Estudio cinético, en condiciones no-isotérmicas, de la desorción térmica del mercurio en suelos contaminados
DOI:
https://doi.org/10.3989/revmetalm.001Palabras clave:
Cinética, Desorción térmica, DSC, Mercurio, Suelos contaminadosResumen
El distrito minero de Almadén (Ciudad Real, España) tiene la mayor mina de cinabrio (sulfuro de mercurio) del mundo. Sus suelos tienen altos niveles de mercurio como consecuencia de su litología natural, pero a menudo su contenido en mercurio es mucho más alto debido a la historia minera de la zona. Este trabajo examina la desorción térmica de dos suelos contaminados procedentes de Almadén bajo condiciones isotérmicas en atmósfera de N2, empleando calorimetría diferencial de barrido (DSC). La calorimetría se llevó a cabo a diferentes velocidades de calentamiento desde temperatura ambiente hasta 600 °C. Se determinaron las diferentes temperaturas de desorción de las especies de mercurio presentes en los suelos. Para determinar la cinética de reacción a partir de los datos de DSC se utilizaron los métodos de Friedman, Flynn-Wall-Ozawa y Coasts–Redfern. Además se calcularon las energías de activación y los factores pre-exponenciales para la desorción del mercurio.
Descargas
Citas
Aboulkas, A., El Harfi, K., El Bouadili, A. 2010. Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms. Energ. Convers. Manage. 51 (7), 1363–1369. http://dx.doi.org/10.1016/j.enconman.2009.12.017
Adriano, D.C. 2001. Chapter 11. Mercury. Trace Elements in the Terrestrial Environments. 2nd Edition ed. New York: Springer; 2001. pp. 411–458.
Biester, H., Gosar, M., Covelli, S. 2000. Mercury speciation in sediments affected by dumped mining residues in the drainage area of the Idrija mercury mine, Slovenia. Environ. Sci. Technol. 34 (16), 3330–3336. http://dx.doi.org/10.1021/es991334v
Coats, A.W., Redfern, J.P. 1964. Kinetic parameters from thermogravimetric data. Nature 201 (491), 68–70. http://dx.doi.org/10.1038/201068a0
Chang, T.C., Yen, J.H. 2006. On-site mercury-contaminated soilsremediation by using thermal desorption technology. J. Hazard. Mater. 128 (2–3), 208–217. http://dx.doi.org/10.1016/j.jhazmat.2005.07.053
Doyle, C.D. 1961. Kinetic analysis of thermogravimetric data. J. Appl. Polym. Sci. 5 (15), 285–292. http://dx.doi.org/10.1002/app.1961.070051506
Egler, S.G., Rodrigues, S., Villas-Boas, R.C., Beinhoff, C. 2006. Evaluation of mercury pollution in cultivated and wild plants from two small communities of the Tapajo's gold mining reserve, Para State, Brazil. Sci. Total. Environ. 368 (1), 424–433. http://dx.doi.org/10.1016/j.scitotenv.2005.09.037
Fitzgerald, W.F., Lamborg, C.H. 2003. Treatise on Geochemistry, Ed. Elsevier, Oxford (UK), pp. 107–148.
Flynn, J.H., Wall, L.A. 1996. A quick direct method for determination of activation energy from thermogravimetric data. J. Polym. Sci. Pol. Lett. 4 (5PB), 323–327.
Friedman, H.L. 1964. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Applications to phenolic plastic. J. Polym. Sci. Pol. Sym. (6PC), 183–195.
Gaona Martínez, X. 2004. El mercurio como contaminante global. Desarrollo de metodologías para su determinación en suelos contaminados y estrategias para la reducción de su liberación al medio ambiente. Barcelona, Universidad Autónoma de Barcelona.
Gochfeld, M. 2003. Cases of mercury exposure, bioavailability, and absorption. Ecotoxicol. Environ. Saf. 56 (1), 174–179. http://dx.doi.org/10.1016/S0147-6513(03)00060-5
Higueras, P., Oyarzun, R., Biester, H., Lillo, J., Lorenzo, S. 2003. A first insight into mercury distribution and speciation in soils from the Almaden mining district, Spain. J. Geochem. Explor. 80 (1), 95–104. http://dx.doi.org/10.1016/S0375-6742(03)00185-7
Hylander, L.D., Meili, M. 2003. 500 years of mercury production: global annual inventory by region until 2000 and associated emissions. Sci. Total. Environ. 304 (1–3), 13–27. http://dx.doi.org/10.1016/S0048-9697(02)00553-3
Karathanasis, A.D., Harris, W.G. 1994. Quantitative Methods in Soil Mineralogy, Ed. Soil Science Society of America, Madison WI, pp. 360–411.
Kunkel, A.M., Seibert, J.J., Elliott, L.J., Kelley, R., Katz, L.E., Pope, G.A. 2006. Remediation of elemental mercury using in situ thermal desorption (ISTD). Environ. Sci. Technol. 40 (7), 2384–2389. http://dx.doi.org/10.1021/es0503581
L'Vov, B.V., Ugolkov, V.L., Grekov, F.F. 2004. Kinetics and mechanism of free-surface vaporization of zinc, cadmium and mercury oxides analyzed by the third-law method. Thermochim. Acta. 411 (2), 187–193. http://dx.doi.org/10.1016/j.tca.2003.08.024
Liu, G.L., Cabrera, J., Allen, M., Cai, Y. 2006. Mercury characterization in a soil sample collected nearby the DOE Oak Ridge Reservation utilizing sequential extraction and thermal desorption method. Sci. Total. Environ. 369 (1–3), 384–392. http://dx.doi.org/10.1016/j.scitotenv.2006.07.011
Lopez-Anton, M.A., Yuan, Y., Perry, R., Maroto-Valer, M.M. 2010. Analysis of mercury species present during coal combustion by thermal desorption. Fuel. 89 (3), 629–634. http://dx.doi.org/10.1016/j.fuel.2009.08.034
López-Delgado, A., López, F.A., Alguacil, F.J., Padilla, I., Guerrero, A. 2012a. A microencapsulation process of liquid mercury by sulfur polymer stabilization/solidification technology. Part I: Characterization of Materials. Rev. Metal. 48 (1), 45–57. http://dx.doi.org/10.3989/revmetalm.1133
López-Delgado, A., Guerrero, A., López, F.A., Pérez, C., Alguacil, F.J. 2012b. A microencapsulation process of liquid mercury by sulfur polymer stabilization/solidification technology. Part II: Durability of Materials. Rev. Metal. 48 (1), 58–66. http://dx.doi.org/10.3989/revmetalm.1137
Loveday, J., Beatty, H.J., Norris, J.M. 1972. Comparison of current chemical methods for evaluating irrigation soils. CSIRO Australia, Division of Soils, Technical Paper 14.
MAPA. 1994. Métodos oficiales de Análisis: Tomo III. (Ministerio de Agricultura, Pesca y Alimentación). Madrid (Spain): Secretaría General Técnica.
Millan, R., Gamarra, R., Schmid, T., Sierra, M.J., Quejido, A.J., Sanchez, D.M., Cardona, A.I., Fernandez, A., Vera, R. 2006. Mercury content in vegetation and soils of the Almaden mining area (Spain). Sci. Total. Environ. 368 (1), 79–87. http://dx.doi.org/10.1016/j.scitotenv.2005.09.096
Millan, R., Schmid, T., Sierra, M.J., Carrasco-Gil, S., Villadoniga, M., Rico, C., Ledesma, D.M.S., Puente, F.J.D. 2011. Spatial variation of biological and pedological properties in an area affected by a metallurgical mercury plant: Almadenejos (Spain). Appl. Geochem. 26 (2), 174–181. http://dx.doi.org/10.1016/j.apgeochem.2010.11.016
Ozaki, M., Uddin, M.A., Sasaoka, E., Wu, S.J. 2008. Temperature programmed decomposition desorption of the mercury species over spent iron-based sorbents for mercury removal from coal derived fuel gas. Fuel. 87 (17–18), 3610–3615. http://dx.doi.org/10.1016/j.fuel.2008.06.011
Ozawa, T., 1965. A new method of analizing thermogravimetric data. Bull. Chem. Soc. Jpn. 38 (11), 1881–1884. http://dx.doi.org/10.1246/bcsj.38.1881
Page, A.L., Miller, R.H., Heeney, D.R. 1987. Methods of soil analysis. Part 2. Chemical and microbiological properties.Ed. American Society of Agronomy, Soil Science Society of America. Madison, Wisconsin (USA).
Paruchuri, Y., Siuniak, A., Johnson, N., Levin, E., Mitchell, K., Goodrich, J.M., Renne, E.P., Basu, N. 2010. Occupational and environmental mercury exposure among small-scale gold miners in the Talensi-Nabdam District of Ghana's Upper East region. Sci. Total. Environ. 408 (24), 6079–6085. http://dx.doi.org/10.1016/j.scitotenv.2010.08.022
Plante, A.F., Fernández, J.M., Leifeld, J. 2009. Application of thermal analysis techniques in soil science. Geoderma. 153 (1–2), 1–10. http://dx.doi.org/10.1016/j.geoderma.2009.08.016
Salgado, J., González, M.I., Armada, J., Paz-Andrade, M.I., Carballas, M., Carballas, T. 1995. Loss of organic matter in Atlantic forest soils due to wildfires. Calculation of the ignition temperature. Thermochim. Acta. 259 (1), 165–175. http://dx.doi.org/10.1016/0040-6031(95)02274-6
Salgado, J., Mato, M.M., Vázquez-Gali-anes, A., Paz-Andrade, M.I., Carballas, T. 2004. Comparison of two calorimetric methods to determine the loss of organic matter in Galician soils (NW Spain) due to forest wildfires. Thermochim. Acta. 410 (1–2), 141–148. http://dx.doi.org/10.1016/S0040-6031(03)00400-3
Skyllberg, U., Bloom, P.R., Qian, J., Lin, C.M., Bleam, W.F. 2006. Complexation of mercury(II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups. Environ. Sci. Technol. 40 (13), 4174–4180. http://dx.doi.org/10.1021/es0600577
Stein, E.D., Cohen, Y., Winer, A.M. 1996. Environmental distribution and transformation of mercury compounds. Crit. Rev. Environ. Sci. Technol. 26 (1), 1–43. http://dx.doi.org/10.1080/10643389609388485
USEPA. 1996. Method 3052. Washington D.C.: EPA Office of Solid Waste.
USEPA. 2008. Land disposal restrictions: Regulations for mercury-containing non waste waters. R 40CFR Part 273.
Vyazovkin, S. 2001. Modification of the integral isoconversional method to account for variation in the activation energy. J. Comput. Chem. 22 (2), 178–183. http://dx.doi.org/10.1002/1096-987X(20010130)22:2<178::AID-JCC5>3.0.CO;2-#
Wang, J.X., Feng, X.B., Anderson, C.W.N., Xing, Y., Shang, L.H. 2012. Remediation of mercury contaminated sites - A review. J. Hazard. Mater. 221, 1–18.
Windmoller, C.C., Wilken, R.D., Jardim, W.D. 1996. Mercury speciation in contaminated soils by thermal release analysis. Water. Air. Soil. Poll. 89 (3–4), 399–416.Aboulkas, A., El Harfi, K., El Bouadili, A. 2010. Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms. Energ. Convers. Manage. 51 (7), 1363–1369.
Adriano, D.C. 2001. Chapter 11. Mercury. Trace Elements in the Terrestrial Environments. 2nd Edition ed. New York: Springer; 2001. pp. 411–458.
Biester, H., Gosar, M., Covelli, S. 2000. Mercury speciation in sediments affected by dumped mining residues in the drainage area of the Idrija mercury mine, Slovenia. Environ. Sci. Technol. 34 (16), 3330–3336. http://dx.doi.org/10.1021/es991334v
Coats, A.W., Redfern, J.P. 1964. Kinetic parameters from thermogravimetric data. Nature 201 (491), 68–70. http://dx.doi.org/10.1038/201068a0
Chang, T.C., Yen, J.H. 2006. On-site mercury-contaminated soilsremediation by using thermal desorption technology. J. Hazard. Mater. 128 (2–3), 208–217. http://dx.doi.org/10.1016/j.jhazmat.2005.07.053
Doyle, C.D. 1961. Kinetic analysis of thermogravimetric data. J. Appl. Polym. Sci. 5 (15), 285–292. http://dx.doi.org/10.1002/app.1961.070051506
Egler, S.G., Rodrigues, S., Villas-Boas, R.C., Beinhoff, C. 2006. Evaluation of mercury pollution in cultivated and wild plants from two small communities of the Tapajo's gold mining reserve, Para State, Brazil. Sci. Total. Environ. 368 (1), 424–433. http://dx.doi.org/10.1016/j.scitotenv.2005.09.037
Fitzgerald, W.F., Lamborg, C.H. 2003. Treatise on Geochemistry, Ed. Elsevier, Oxford (UK), pp. 107–148.
Flynn, J.H., Wall, L.A. 1996. A quick direct method for determination of activation energy from thermogravimetric data. J. Polym. Sci. Pol. Lett. 4 (5PB), 323–327.
Friedman, H.L. 1964. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Applications to phenolic plastic. J. Polym. Sci. Pol. Sym. (6PC), 183–195.
Gaona Martínez, X. 2004. El mercurio como contaminante global. Desarrollo de metodologías para su determinación en suelos contaminados y estrategias para la reducción de su liberación al medio ambiente. Barcelona, Universidad Autónoma de Barcelona.
Gochfeld, M. 2003. Cases of mercury exposure, bioavailability, and absorption. Ecotoxicol. Environ. Saf. 56 (1), 174–179. http://dx.doi.org/10.1016/S0147-6513(03)00060-5
Higueras, P., Oyarzun, R., Biester, H., Lillo, J., Lorenzo, S. 2003. A first insight into mercury distribution and speciation in soils from the Almaden mining district, Spain. J. Geochem. Explor. 80 (1), 95–104. http://dx.doi.org/10.1016/S0375-6742(03)00185-7
Hylander, L.D., Meili, M. 2003. 500 years of mercury production: global annual inventory by region until 2000 and associated emissions. Sci. Total. Environ. 304 (1–3), 13–27. http://dx.doi.org/10.1016/S0048-9697(02)00553-3
Karathanasis, A.D., Harris, W.G. 1994. Quantitative Methods in Soil Mineralogy, Ed. Soil Science Society of America, Madison WI, pp. 360–411.
Kunkel, A.M., Seibert, J.J., Elliott, L.J., Kelley, R., Katz, L.E., Pope, G.A. 2006. Remediation of elemental mercury using in situ thermal desorption (ISTD). Environ. Sci. Technol. 40 (7), 2384–2389. http://dx.doi.org/10.1021/es0503581
L'Vov, B.V., Ugolkov, V.L., Grekov, F.F. 2004. Kinetics and mechanism of free-surface vaporization of zinc, cadmium and mercury oxides analyzed by the third-law method. Thermochim. Acta. 411 (2), 187–193. http://dx.doi.org/10.1016/j.tca.2003.08.024
Liu, G.L., Cabrera, J., Allen, M., Cai, Y. 2006. Mercury characterization in a soil sample collected nearby the DOE Oak Ridge Reservation utilizing sequential extraction and thermal desorption method. Sci. Total. Environ. 369 (1–3), 384–392. http://dx.doi.org/10.1016/j.scitotenv.2006.07.011
Lopez-Anton, M.A., Yuan, Y., Perry, R., Maroto-Valer, M.M. 2010. Analysis of mercury species present during coal combustion by thermal desorption. Fuel. 89 (3), 629–634. http://dx.doi.org/10.1016/j.fuel.2009.08.034
López-Delgado, A., López, F.A., Alguacil, F.J., Padilla, I., Guerrero, A. 2012a. A microencapsulation process of liquid mercury by sulfur polymer stabilization/solidification technology. Part I: Characterization of Materials. Rev. Metal. 48 (1), 45–57. http://dx.doi.org/10.3989/revmetalm.1133
López-Delgado, A., Guerrero, A., López, F.A., Pérez, C., Alguacil, F.J. 2012b. A microencapsulation process of liquid mercury by sulfur polymer stabilization/solidification technology. Part II: Durability of Materials. Rev. Metal. 48 (1), 58–66. http://dx.doi.org/10.3989/revmetalm.1137
Loveday, J., Beatty, H.J., Norris, J.M. 1972. Comparison of current chemical methods for evaluating irrigation soils. CSIRO Australia, Division of Soils, Technical Paper 14.
MAPA. 1994. Métodos oficiales de Análisis: Tomo III. (Ministerio de Agricultura, Pesca y Alimentación). Madrid (Spain): Secretaría General Técnica.
Millan, R., Gamarra, R., Schmid, T., Sierra, M.J., Quejido, A.J., Sanchez, D.M., Cardona, A.I., Fernandez, A., Vera, R. 2006. Mercury content in vegetation and soils of the Almaden mining area (Spain). Sci. Total. Environ. 368 (1), 79–87. http://dx.doi.org/10.1016/j.scitotenv.2005.09.096
Millan, R., Schmid, T., Sierra, M.J., Carrasco-Gil, S., Villadoniga, M., Rico, C., Ledesma, D.M.S., Puente, F.J.D. 2011. Spatial variation of biological and pedological properties in an area affected by a metallurgical mercury plant: Almadenejos (Spain). Appl. Geochem. 26 (2), 174–181. http://dx.doi.org/10.1016/j.apgeochem.2010.11.016
Ozaki, M., Uddin, M.A., Sasaoka, E., Wu, S.J. 2008. Temperature programmed decomposition desorption of the mercury species over spent iron-based sorbents for mercury removal from coal derived fuel gas. Fuel. 87 (17–18), 3610–3615. http://dx.doi.org/10.1016/j.fuel.2008.06.011
Ozawa, T., 1965. A new method of analizing thermogravimetric data. Bull. Chem. Soc. Jpn. 38 (11), 1881–1884. http://dx.doi.org/10.1246/bcsj.38.1881
Page, A.L., Miller, R.H., Heeney, D.R. 1987. Methods of soil analysis. Part 2. Chemical and microbiological properties.Ed. American Society of Agronomy, Soil Science Society of America. Madison, Wisconsin (USA).
Paruchuri, Y., Siuniak, A., Johnson, N., Levin, E., Mitchell, K., Goodrich, J.M., Renne, E.P., Basu, N. 2010. Occupational and environmental mercury exposure among small-scale gold miners in the Talensi-Nabdam District of Ghana's Upper East region. Sci. Total. Environ. 408 (24), 6079–6085. http://dx.doi.org/10.1016/j.scitotenv.2010.08.022
Plante, A.F., Fernández, J.M., Leifeld, J. 2009. Application of thermal analysis techniques in soil science. Geoderma. 153 (1–2), 1–10. http://dx.doi.org/10.1016/j.geoderma.2009.08.016
Salgado, J., González, M.I., Armada, J., Paz-Andrade, M.I., Carballas, M., Carballas, T. 1995. Loss of organic matter in Atlantic forest soils due to wildfires. Calculation of the ignition temperature. Thermochim. Acta. 259 (1), 165–175. http://dx.doi.org/10.1016/0040-6031(95)02274-6
Salgado, J., Mato, M.M., Vázquez-Gali-anes, A., Paz-Andrade, M.I., Carballas, T. 2004. Comparison of two calorimetric methods to determine the loss of organic matter in Galician soils (NW Spain) due to forest wildfires. Thermochim. Acta. 410 (1–2), 141–148. http://dx.doi.org/10.1016/S0040-6031(03)00400-3
Skyllberg, U., Bloom, P.R., Qian, J., Lin, C.M., Bleam, W.F. 2006. Complexation of mercury(II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups. Environ. Sci. Technol. 40 (13), 4174–4180. http://dx.doi.org/10.1021/es0600577
Stein, E.D., Cohen, Y., Winer, A.M. 1996. Environmental distribution and transformation of mercury compounds. Crit. Rev. Environ. Sci. Technol. 26 (1), 1–43. http://dx.doi.org/10.1080/10643389609388485
USEPA. 1996. Method 3052. Washington D.C.: EPA Office of Solid Waste.
USEPA. 2008. Land disposal restrictions: Regulations for mercury-containing non waste waters. R 40CFR Part 273.
Vyazovkin, S. 2001. Modification of the integral isoconversional method to account for variation in the activation energy. J. Comput. Chem. 22 (2), 178–183. http://dx.doi.org/10.1002/1096-987X(20010130)22:2<178::AID-JCC5>3.0.CO;2-#
Wang, J.X., Feng, X.B., Anderson, C.W.N., Xing, Y., Shang, L.H. 2012. Remediation of mercury contaminated sites - A review. J. Hazard. Mater. 221, 1–18.
Windmoller, C.C., Wilken, R.D., Jardim, W.D. 1996. Mercury speciation in contaminated soils by thermal release analysis. Water. Air. Soil. Poll. 89 (3–4), 399–416. http://dx.doi.org/10.1007/BF00171644
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2014 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.