Effect of microstructure on the impact toughness of high strength steels
DOI:
https://doi.org/10.3989/revmetalm.029Keywords:
Charpy model, Mechanical properties, Microalloying, Microstructure, ToughnessAbstract
One of the major challenges in the development of new steel grades is to get increasingly high strength combined with a low ductile brittle transition temperature and a high upper shelf energy. This requires the appropriate microstructural design. Toughness in steels is controlled by different microstructural constituents. Some of them, like inclusions, are intrinsic while others happening at different microstructural scales relate to processing conditions. A series of empirical equations express the transition temperature as a sum of contributions from substitutional solutes, free nitrogen, carbides, pearlite, grain size and eventually precipitation strengthening. Aimed at developing a methodology that could be applied to high strength steels, microstructures with a selected degree of complexity were produced at laboratory in a Nb-microalloyed steel. As a result a model has been developed that consistently predicts the Charpy curves for ferrite-pearlite, bainitic and quenched and tempered microstructures using as input data microstructural parameters. This model becomes a good tool for microstructural design.
Downloads
References
Altuna, M.A., Gutiérrez, E.I. (2005). Relación microestructuracomportamiento mecánico en estructuras bainíticas. Rev. Metal. 41 (5), 357–364. http://dx.doi.org/10.3989/revmetalm.2005.v41.i5.225
Altuna, M.A., Iza-Mendia, A., Gutiérrez, I. (2012). Precipitation of Nb in ferrite after austenite conditioning. Part II: Strengthening Contribution in High-Strength Low-Alloy (HSLA) Steels. Metall. Mater. Trans. A 43 (12), 4571–4586. http://dx.doi.org/10.1007/s11661-012-1270-x
Bengochea, R., López, B., Gutiérrez, I. (1998). Microstructural evolution during the austenite to ferrite transformation from deformed austenite. Metall. Mater. Trans. A 29 (2), 417–426. http://dx.doi.org/10.1007/s11661-998-0122-1
Bhadeshia, H.K.D.H. (2001). Bainite in Steels. Second Edition, IOM Communications Ltd, London.
Bhattacharjee, D., Knott, J.F., Davis, C.L. (2004). Charpy-Impact-Toughness prediction using an "effective" grain size for thermomechanically controlled rolled microalloyed steels. Metall. Mater. Trans. A 35 (1), 121–130. http://dx.doi.org/10.1007/s11661-004-0115-7
Díaz-Fuentes, M., Iza-Mendia, A., Gutiérrez, I. (2003). Analysis of different acicular ferrite microstructures in low carbon steels by EBSD. Study of their toughness behavior. Metall. Mater. Trans. A 34 (11), 2505–2516. http://dx.doi.org/10.1007/s11661-003-0010-7
Gladman, T., Holnes B, McIvor, I.D. (1971). Effect of secondphase particles on strength, toughness and ductility. Proc. Conf. Effect of second-phase particles on the mechanical properties of steel, Corporate Laboratories of the British Steel Corporation and the Iron and Steel Institute, Scarborough, London, pp. 67–78.
Gladman, T. (1997). The Physical Metallurgy of Microalloyed Steels. Institute of Materials, London, England, p. 55.
Gladman, T. (1999). Precipitation hardening in metals. Mater. Sci. Technol. 15 (1), 30–36. http://dx.doi.org/10.1179/026708399773002782
Gourgues, A.F., Flower, H.M., Lindley, T.C. (2000). Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures. Mater. Sci. Technol. 16 (1), 26–40. http://dx.doi.org/10.1179/026708300773002636
Gutiérrez, I. (2013). Effect of microstructure on the impact toughness of Nb-microalloyed steel: Generalisation of existing relations from ferrite–pearlite to high strength microstructures. Mat. Sci. Eng. A 571, 57–67. http://dx.doi.org/10.1016/j.msea.2013.02.006
Gutiérrez, I., Altuna, A. (2008). Work-hardening of ferrite and microstructure-based modelling of its mechanical behaviour under tension. Acta Mater. 56 (17), 4682–4690. http://dx.doi.org/10.1016/j.actamat.2008.05.023
Herman, J.C., Donnay, B., Leroy, V. (1992). Precipitation Kinetics of Microalloying Additions during Hot-rolling of HSLA Steels. ISIJ Int. 32 (6), 779–785. http://dx.doi.org/10.2355/isijinternational.32.779
Irvine, K.J., Pickering, F.B., Gladman, T. (1967). Grain-Refined C-Mn Steels. JISI, 205, 161–182.
Iza-Mendia, A., Altuna, M.A. Pereda B., Gutiérrez, I. (2012). Precipitation of Nb in Ferrite After Austenite Conditioning. Part I: Microstructural Characterization. Metall. Mat. Trans. A 43 (12), 4553–4570. http://dx.doi.org/10.1007/s11661-012-1395-y
Iza-Mendia, A., Gutiérrez I. (2013). Generalization of the existing relations between microstructure and yield stress from ferrite–pearlite to high strength steels. Mat. Sci. Eng. A 561 (20), 40–51. http://dx.doi.org/10.1016/j.msea.2012.10.012
Kestenbach, H.J. (1997). Dispersion hardening by niobium carbonitride precipitation in ferrite. Mater. Sci. Technol. 13 (9), 731–739. http://dx.doi.org/10.1179/mst.1997.13.9.731
López, B. (2006). Characterisation and Modelling of Strain Induced Precipitation, ECSC Final Report: Contract No 7210-PR/350. CAMSIP, by Scott, C., Rose, A., Soenen, B., Lopez, B., Paul, G., Published Technical Steel Research, EUR 22431, ISBN 92-79-03740-4.
Malik, L., Lund, J.A. (1972). A Study of Strengthening Mechanisms in Tempered Martensite From a Medium Carbon Steel. Metall. Trans. 3 (6), 1403–1406. http://dx.doi.org/10.1007/BF02643024
Mintz, B., Morrison, W.B., Jones, A. (1979). Influence of carbide thickness on impact transition temperature of ferritic steels. Mater. Sci. Technol. 6 (1), 252–260.
Mintz, B., Peterson, G., Nassar A. (1994). Structure-Property Relationships in Ferrite-Pearlite Steels. Ironmak. Steelmak. 21 (3), 215–222.
Novillo, E., Cotrina, E., Iza-Mendia, A., López, B, Gutiérrez, I. (2005). Factors limiting the achievable ferrite grain refinement in hot worked microalloyed steels materials. Science Forum 500–501, 355–362. http://dx.doi.org/10.4028/www.scientific.net/MSF.500-501.355
Pickering, F.B. (1978). Physical metallurgy and the design of steels. Ed. Applied Science Publishers, p. 10.
Pickering, F.B. (1993). Structure-property relationships in steels. Materials Science and Engineering, Ed. R.W. Cahn, P. Haasen, E.J. Kramer, Vol. 7, Constitution and Properties of Steels, Ed. F.B. Pickering, VCH, p. 47.
Sung, H.K., Shin, S.Y., Hwang, B., Lee, C.G., Lee, S. (2011). Effects of Rolling and Cooling Conditions on Microstructure and Tensile and Charpy Impact Properties of Ultra-Low-Carbon High-Strength Bainitic Steels. Metall. Mat. Trans. A 42 (7), 1827–1835. http://dx.doi.org/10.1007/s11661-010-0590-y
Todinov, M.T. (2001). An efficient method for estimating from sparse data the parameters of the impact energy variation in the ductile-brittle transition region. Int. J. Fracture 111 (2), 131–150. http://dx.doi.org/10.1023/A:1012212610024
Zajac, S., Achwinn, V., Tacke, K.H. (2005). Characterisation and quantification of complex bainitic microstructures in high and ultra-high strength linepipe steels. Materials Science Forum 500–501, 387–394. http://dx.doi.org/10.4028/www.scientific.net/MSF.500-501.387
Zubialde, R., Uranga, P., López, B., Rodriguez-Ibabe, J.M. (2013). Heterogeneity and microstructural features intervening in the ductile-brittle transition of ferrite-pearlite steels, Conf. Proc. Materials Science and Technology (MS&T), Montreal, Quebec, Canada, pp. 313–320.
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.