Formation of abrasion-resistant coatings of the AlSiFexMny intermetallic compound type on the AISI 304L alloy

Authors

  • Laura G. Martínez-Perales Centro de Investigación y de Estudios Avanzados del IPN
  • Alfredo Flores-Valdés Centro de Investigación y de Estudios Avanzados del IPN
  • Armando Salinas-Rodríguez Centro de Investigación y de Estudios Avanzados del IPN
  • Rocío M. Ochoa-Palacios Centro de Investigación y de Estudios Avanzados del IPN
  • José A. Toscano-Giles Centro de Investigación y de Estudios Avanzados del IPN
  • Jesús Torres-Torres Centro de Investigación y de Estudios Avanzados del IPN

DOI:

https://doi.org/10.3989/revmetalm.061

Keywords:

Alluminides, Intermetallic compounds, Stainless steel, α-Al9FeMnSi, β-Al9FeMn2Si

Abstract


The α-Al9FeMnSi and β-Al9FeMn2Si intermetallics formed by reactive sintering of Al, Si, Mn, Fe, Cr and Ni powders have been used in AISI 304L steels to enhance microhardness. Processing variables of the reactive sintering treatment were temperature (600, 650, 700, 750 and 800 °C), pressure (5, 10 y 20 MPa) and holding time (3600, 5400 y 7200 seconds). Experimental results show that temperature is the most important variable affecting the substrate/coating formation, while pressure does not appear to have a significant effect. The results show the optimum conditions of the reactive sintering that favor the substrate/coating formation are 800 °C, 20 MPa and 7200 seconds. Under these conditions, the reaction zone between the substrate and coating is more compacted and well-adhered, with a microhardness of 1300 Vickers. The results of SEM and X-Ray diffraction confirmed the formation of α-Al9FeMnSi and β-Al9FeMn2Si intermetallics in the substrate/coating interface as well as the presence of Cr and Ni, indicating diffusion of these two elements from the substrate to the interface.

Downloads

Download data is not yet available.

References

Benci, J.E., Ma, J.C., Feist, T.P. (1995). Evaluation of the intermetallic compound Al2Ti for elevaded-temperature applications. Mat. Sci. Eng. A-Struct. 192-193, 38-44. http://dx.doi.org/10.1016/0921-5093(94)03201-7

Borrero-López, O., Hoffman, M. (2014). Measurement of fracture strength in brittle thin films. Surf. Coat. Tech. 254, 1-10. http://dx.doi.org/10.1016/j.surfcoat.2014.05.053

Clarke, D.R., Oechsner, M., Padture, N.P. (2012). Thermal-barrier coatings for more efficient gas-turbine engines. Mat. Res. Soc. 37 (10), 891-898. http://dx.doi.org/10.1557/mrs.2012.232

Chang, Y., Tsaur, C.C., Rock, J.C. (2006) Microstructure studies of an aluminide coating on 9Cr-1Mo steel during high temperatura oxidation. Surf. Coat. Tech. 200 (22-23), 6588-6593. http://dx.doi.org/10.1016/j.surfcoat.2005.11.038

Dai, Y., Boutellier, V., Gavillet, D., Glasbrenner, H., Weisenburger, A., Wagner, W. (2012) FeCrAlY and TiN coatings on T91 steel after irradiation with 72 MeV protons in flowing LBE. J. Nucl. Mater. 431 (1-3), 66-76. http://dx.doi.org/10.1016/j.jnucmat.2011.11.006

Das, S.K., Joarder, A., Mitra, A. (2004). Magnetic Barkhausen emissions and microstructural degradation study in 1.25 Cr-0.50 Mo steel during high temperature exposure. NDT&E Int. 37 (4), 243-248.

Deng, B., Tao, Y., Zhu, X., Qin, H. (2014). The oxidation behavior and tribological properties of Si-implanted TiN coating. Vacuum 99, 216-224. http://dx.doi.org/10.1016/j.vacuum.2013.06.006

Flores, A., Castillejos, A., Acosta, A.H., Bocardo, F., Toscano, A. (1999). The Development of Surface Coatings for Co-Cr-Mo alloys Based on Quaternary AlSiFeMn Intermetallic Compounds, Cobalt-Base Alloys for Biomedical Applications, J.A. Disegi, R.L. Kennedy, R. Pilliar (Eds.), American Society for Testing and Materials, USA, pp. 179-189.

Han, Y.F., Xing, Z.P. (1997). Structural Intermetallics. Development and Engineering Application of a DS cast Ni3Al Alloy IC6, M. Nathal, R. Darolia, C.T. Liu, P.L. Martin (Eds.), Minerals, Metals and Materials Society, USA, pp. 713-719.

Khina, B.B., Kulak, M.M. (2013). Effect of ultrasound on combustión synthesis of composite material "TiC metal binder". J. Alloy Compd. 578, 595-601. http://dx.doi.org/10.1016/j.jallcom.2013.07.030

Kobayashi, S., Yakou, T. (2002). Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment. Mat. Sci. Eng. A-Struct. 338 (1-2), 44-53. http://dx.doi.org/10.1016/S0921-5093(02)00053-9

Kral, M.V., McIntyre, H.R., Smillie, M.J. (2004). Identification of intermetallic phases in a eutectic Al-Si casting alloy electron backscatter diffraction pattern analysis. Scripta Mater. 51 (3), 215-219.

Li, S., Zhang, J. Wang, B., Zhang, J., Zou, D., Jia, T., Gong, Z. (1997). Structural Intermetallics. Study on superplasticity of deformed Ti3Al and TiAl base alloys, M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin (Eds.), Minerals, Metals and Materials Society, USA, pp. 361-367.

Mohapatra, J.N., Panda, A.K., Gunjan, M.K., Bandyopadhyay, N.R., Mitra, A., Ghosh, R.N. (2007). Ageing behavior study of 5Cr-0.5Mo steel by magnetic Barkhausen emissions and magnetic hysteresis loop techniques. NDT&E Int. 40 (2), 173.

Mohapatra, J.N., Ray, A.K., Swaminathan, J., Mitra, A. (2008). Creep behaviour study of virgin and service exposed 5Cr-0.5Mo teel using magnetic arkhausen emissions technique. J. Magn. Magn. Mater. 320 (18), 2284-2290.

Orozco, P., Castro, M., López, J., Hernández, A., Mu-iz, R., Luna, S., Ortiz, C. (2011). Effect of iron addition on the crystal structure of the Éø-AlFeMnSi phase formed in the quaternary Al-Fe-Mn-Si system. Rev. Metal. 47 (6), 453-461.

Sikka, V.K., Viswanathan, S., Mc Kamey, C.G. (1993). Structural Intermetallics. Development and Commercialization status of Al3Ti Based Intermetallics Alloy, R. Darolia, J.J. Lewandowski, C.T. Liu (Eds.), Minerals, Metals and Materials Society, USA, pp. 483-491.

Sun, R.L., Lei, Y.W., Niu, W. (2009). Laser clad Cr3C2-Ni composite coating on titanium alloys. Surf. Eng. 25 (3), 206-210. http://dx.doi.org/10.1179/026708409X375299

Toscano, J.A. (2002). Procesamiento y Microestructura de Compuestos Intermetálicos Al(FeMn)Si Elaborados Mediante Sinterización Reactiva de Polvos Asistido con Presión Uniaxial. PhD Thesis, CINVESTAV-IPN, Unidad Saltillo, México, pp. 62-68.

Toscano, J.A., Flores, A., Salinas, A., Nava, E. (2003). Microstructure of Al9(Fe,Mn)xSi intermetallics produced by pressure-assisted reactive sintering of elemental AlMnFeSi poder mixtures. Mater. Lett. 57 (15), 2246-2252. http://dx.doi.org/10.1016/S0167-577X(02)01204-1

Wang, C.J., Chen, S.M. (2006). The high-temperature oxidation behavior of hot-dipping Al-Si coating on low carbon steel. Surf. Coat. Tech. 200 (22-23), 6601 -6605. http://dx.doi.org/10.1016/j.surfcoat.2005.11.031

Whittenberger, J.D. (1990). Solid State Processing for High Temperature Alloys and Composites, Solid State Powder Processing, A.H. Clauer, J.J. de Barbadillo (Eds). Minerals, Metals and Materials Society, USA, pp. 137-155.

Published

2016-03-30

How to Cite

Martínez-Perales, L. G., Flores-Valdés, A., Salinas-Rodríguez, A., Ochoa-Palacios, R. M., Toscano-Giles, J. A., & Torres-Torres, J. (2016). Formation of abrasion-resistant coatings of the AlSiFexMny intermetallic compound type on the AISI 304L alloy. Revista De Metalurgia, 52(1), e061. https://doi.org/10.3989/revmetalm.061

Issue

Section

Articles