Formation of abrasion-resistant coatings of the AlSiFexMny intermetallic compound type on the AISI 304L alloy
DOI:
https://doi.org/10.3989/revmetalm.061Keywords:
Alluminides, Intermetallic compounds, Stainless steel, α-Al9FeMnSi, β-Al9FeMn2SiAbstract
The α-Al9FeMnSi and β-Al9FeMn2Si intermetallics formed by reactive sintering of Al, Si, Mn, Fe, Cr and Ni powders have been used in AISI 304L steels to enhance microhardness. Processing variables of the reactive sintering treatment were temperature (600, 650, 700, 750 and 800 °C), pressure (5, 10 y 20 MPa) and holding time (3600, 5400 y 7200 seconds). Experimental results show that temperature is the most important variable affecting the substrate/coating formation, while pressure does not appear to have a significant effect. The results show the optimum conditions of the reactive sintering that favor the substrate/coating formation are 800 °C, 20 MPa and 7200 seconds. Under these conditions, the reaction zone between the substrate and coating is more compacted and well-adhered, with a microhardness of 1300 Vickers. The results of SEM and X-Ray diffraction confirmed the formation of α-Al9FeMnSi and β-Al9FeMn2Si intermetallics in the substrate/coating interface as well as the presence of Cr and Ni, indicating diffusion of these two elements from the substrate to the interface.
Downloads
References
Benci, J.E., Ma, J.C., Feist, T.P. (1995). Evaluation of the intermetallic compound Al2Ti for elevaded-temperature applications. Mat. Sci. Eng. A-Struct. 192-193, 38-44. http://dx.doi.org/10.1016/0921-5093(94)03201-7
Borrero-López, O., Hoffman, M. (2014). Measurement of fracture strength in brittle thin films. Surf. Coat. Tech. 254, 1-10. http://dx.doi.org/10.1016/j.surfcoat.2014.05.053
Clarke, D.R., Oechsner, M., Padture, N.P. (2012). Thermal-barrier coatings for more efficient gas-turbine engines. Mat. Res. Soc. 37 (10), 891-898. http://dx.doi.org/10.1557/mrs.2012.232
Chang, Y., Tsaur, C.C., Rock, J.C. (2006) Microstructure studies of an aluminide coating on 9Cr-1Mo steel during high temperatura oxidation. Surf. Coat. Tech. 200 (22-23), 6588-6593. http://dx.doi.org/10.1016/j.surfcoat.2005.11.038
Dai, Y., Boutellier, V., Gavillet, D., Glasbrenner, H., Weisenburger, A., Wagner, W. (2012) FeCrAlY and TiN coatings on T91 steel after irradiation with 72 MeV protons in flowing LBE. J. Nucl. Mater. 431 (1-3), 66-76. http://dx.doi.org/10.1016/j.jnucmat.2011.11.006
Das, S.K., Joarder, A., Mitra, A. (2004). Magnetic Barkhausen emissions and microstructural degradation study in 1.25 Cr-0.50 Mo steel during high temperature exposure. NDT&E Int. 37 (4), 243-248.
Deng, B., Tao, Y., Zhu, X., Qin, H. (2014). The oxidation behavior and tribological properties of Si-implanted TiN coating. Vacuum 99, 216-224. http://dx.doi.org/10.1016/j.vacuum.2013.06.006
Flores, A., Castillejos, A., Acosta, A.H., Bocardo, F., Toscano, A. (1999). The Development of Surface Coatings for Co-Cr-Mo alloys Based on Quaternary AlSiFeMn Intermetallic Compounds, Cobalt-Base Alloys for Biomedical Applications, J.A. Disegi, R.L. Kennedy, R. Pilliar (Eds.), American Society for Testing and Materials, USA, pp. 179-189.
Han, Y.F., Xing, Z.P. (1997). Structural Intermetallics. Development and Engineering Application of a DS cast Ni3Al Alloy IC6, M. Nathal, R. Darolia, C.T. Liu, P.L. Martin (Eds.), Minerals, Metals and Materials Society, USA, pp. 713-719.
Khina, B.B., Kulak, M.M. (2013). Effect of ultrasound on combustión synthesis of composite material "TiC metal binder". J. Alloy Compd. 578, 595-601. http://dx.doi.org/10.1016/j.jallcom.2013.07.030
Kobayashi, S., Yakou, T. (2002). Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment. Mat. Sci. Eng. A-Struct. 338 (1-2), 44-53. http://dx.doi.org/10.1016/S0921-5093(02)00053-9
Kral, M.V., McIntyre, H.R., Smillie, M.J. (2004). Identification of intermetallic phases in a eutectic Al-Si casting alloy electron backscatter diffraction pattern analysis. Scripta Mater. 51 (3), 215-219.
Li, S., Zhang, J. Wang, B., Zhang, J., Zou, D., Jia, T., Gong, Z. (1997). Structural Intermetallics. Study on superplasticity of deformed Ti3Al and TiAl base alloys, M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin (Eds.), Minerals, Metals and Materials Society, USA, pp. 361-367.
Mohapatra, J.N., Panda, A.K., Gunjan, M.K., Bandyopadhyay, N.R., Mitra, A., Ghosh, R.N. (2007). Ageing behavior study of 5Cr-0.5Mo steel by magnetic Barkhausen emissions and magnetic hysteresis loop techniques. NDT&E Int. 40 (2), 173.
Mohapatra, J.N., Ray, A.K., Swaminathan, J., Mitra, A. (2008). Creep behaviour study of virgin and service exposed 5Cr-0.5Mo teel using magnetic arkhausen emissions technique. J. Magn. Magn. Mater. 320 (18), 2284-2290.
Orozco, P., Castro, M., López, J., Hernández, A., Mu-iz, R., Luna, S., Ortiz, C. (2011). Effect of iron addition on the crystal structure of the Éø-AlFeMnSi phase formed in the quaternary Al-Fe-Mn-Si system. Rev. Metal. 47 (6), 453-461.
Sikka, V.K., Viswanathan, S., Mc Kamey, C.G. (1993). Structural Intermetallics. Development and Commercialization status of Al3Ti Based Intermetallics Alloy, R. Darolia, J.J. Lewandowski, C.T. Liu (Eds.), Minerals, Metals and Materials Society, USA, pp. 483-491.
Sun, R.L., Lei, Y.W., Niu, W. (2009). Laser clad Cr3C2-Ni composite coating on titanium alloys. Surf. Eng. 25 (3), 206-210. http://dx.doi.org/10.1179/026708409X375299
Toscano, J.A. (2002). Procesamiento y Microestructura de Compuestos Intermetálicos Al(FeMn)Si Elaborados Mediante Sinterización Reactiva de Polvos Asistido con Presión Uniaxial. PhD Thesis, CINVESTAV-IPN, Unidad Saltillo, México, pp. 62-68.
Toscano, J.A., Flores, A., Salinas, A., Nava, E. (2003). Microstructure of Al9(Fe,Mn)xSi intermetallics produced by pressure-assisted reactive sintering of elemental AlMnFeSi poder mixtures. Mater. Lett. 57 (15), 2246-2252. http://dx.doi.org/10.1016/S0167-577X(02)01204-1
Wang, C.J., Chen, S.M. (2006). The high-temperature oxidation behavior of hot-dipping Al-Si coating on low carbon steel. Surf. Coat. Tech. 200 (22-23), 6601 -6605. http://dx.doi.org/10.1016/j.surfcoat.2005.11.031
Whittenberger, J.D. (1990). Solid State Processing for High Temperature Alloys and Composites, Solid State Powder Processing, A.H. Clauer, J.J. de Barbadillo (Eds). Minerals, Metals and Materials Society, USA, pp. 137-155.
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.