Statistical study to determine the effect of carbon, silicon, nickel and other alloying elements on the mechanical properties of as-cast ferritic ductile irons
DOI:
https://doi.org/10.3989/revmetalm.070Keywords:
As-cast ferritic ductile cast irons, Carbon, Mechanical properties, Nickel, SiliconAbstract
There is a great interest in fully ferritic ductile irons due to their structural homogeneity, remarkable ductility and good response when machining. On the other hand the wide variety of raw materials available in foundry plants becomes a problem when controlling the chemical composition of the manufactured alloys. The present work shows a statistical study about the effect of different C, Si, Ni contents and other minor elements on structural and mechanical properties of a group of ferritic ductile iron alloys. A set of equations are finally presented to predict room temperature mechanical properties of ferritic ductile irons by means of their chemical composition and pearlite content.
Downloads
References
De la Torre, U., Loizaga, A., Lacaze, J., Sertucha, J. (2014). Ascast high silicon ductile irons with optimised mechanical properties and remarkable fatigue properties. Mater. Sci. Tech. 30 (12), 1425–1431. http://dx.doi.org/10.1179/1743284713Y.0000000483
Goodrich, G.M., Lobenhofer, R.W. (2002). Effect of cooling rate on ductile iron mechanical properties. AFS Trans. 110, paper 02–137.
Lacaze, J., Larra-aga, P., Asenjo, I., Suarez, R., Sertucha, J. (2012). Influence of 1 wt-% addition of Ni on structural and mechanical properties of ferritic ductile irons. Mater. Sci. Tech. 28 (5), 603–608. http://dx.doi.org/10.1179/1743284711Y.0000000100
Lundbäck, E., Svensson, I.L. (1991). Prediction of properties of nodular cast iron castings, by means of computer simulation. Proceedings MCWASP V, Eds. Rappaz, M., Ozgu, M.R., Mahin, K.W., TMS, pp. 479–484.
O'Brien, J., Adams, A., Avedisian, A., Barnes, G.J., Booth, B.N., Dubberstein, G., House, W., Janowak, J.F., Langner, E.E., Lansing, J.H., Lee, R.S., Nelson, C.D., Parks, T.W., Peacock, J.H., Thomson, R.S., Vanik, J.S., Warrick, R.J. (1974). Reference microstructure for measurement of pearlite and ferrite content in ductile iron microstructures. AFS Trans. 82, 545–550.
Ryntz, E.F. (1974). Reference microstructures for visual estimation of iron carbide content in nodular iron. AFS Trans. 82, 551–554.
Sertucha, J., Lacaze, J., Serrallach, J., Su.rez, R., Osuna, F. (2012). Effect of alloying on mechanical properties of as cast ferritic nodular cast irons. Mater. Sci. Tech. 28 (2), 184–191. http://dx.doi.org/10.1179/1743284711Y.0000000014
Stets, W., L.blich, H., Gassner, G., Schumacher, P. (2013). Solution strengthened ferritic ductile cast iron according DIN EN 1563:2012 properties, production and application. Proceedings Keith Millis Symposium, Nashville, USA. PMCid:PMC3600831
Venugopalan, D., Alagarsamy, A. (1990). Effects of alloy additions on the microstructure and mechanical properties of commercial ductile iron. AFS Trans. 98, 395–400.
Watmough, T., Shaw, W.F., Bock, F.C. (1971). Combined effects of selected elements on the properties of ductile iron. AFS Trans. 79, 225–246.
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.