Effect of alloying with Ni, Cr and Al on the atmospheric and electrochemical corrosion resistance of ferritic ductile cast irons





Alloying elements, Atmospheric corrosion, Electrochemical corrosion, Ductile iron


The corrosion control of ductile cast irons becomes a technological challenge when supplying castings to customers due to the high reactivity of this alloy in contact with air. An interesting alternative to the protective systems such as coatings or corrosion inhibitors included in packaging processes is the chemical modification of the cast alloys by means of alloying elements addition which are able to improve the corrosion resistance of ductile cast irons. Ni, Cr and Al added to the cast alloys significantly affect their structure and properties, among them their corrosion response, when exposed to air. It has been observed that Ni and Al improve the corrosion behaviour while Cr additionally promoted pearlite and carbides formation. The results from the corrosion tests performed on ductile cast iron alloys which contain these three elements are discussed in the present work.


Download data is not yet available.


AFS (1984). Reference microstructure for measurement of pearlite and ferrite content in ductile iron microstructures. AFS current information report. Quality Control Committee 12-E, Ductile Iron Division.

Ali, M., Alshalal, I., Al Zubaidi, F.N., Yousif, A.R. (2020). Improvement of corrosion and erosion resistance properties for cast iron. IOP Conf. Ser.: Mater. Sci. Eng. 881, 012068. https://doi.org/10.1088/1757-899X/881/1/012068

Arenas, M.A., Niklas, A. Conde, A., Méndez, S., Sertucha, J., de Damborenea, J.J. (2014). Comportamiento frente a la corrosión de fundiciones con grafito laminar y esferoidal parcialmente modificadas con silicio en NaCl 0,03 M. Rev. Metal. 50 (4), e032. https://doi.org/10.3989/revmetalm.032

ASM Handbook (2017). Cast iron science and technology. Corrosion in cast Irons. (Vol 1A). in D. M. Stefanescu (Ed.) ASM International, Ohio, USA, pp. 502-510. https://doi.org/10.31399/asm.hb.v01a.a0006349

ASM Speciality Handbook (1996). Cast Irons. J.R. Davis, ASM International, Ohio, USA, pp. 437-447.

Ebel, A., Brou, S.Y., Malard B., Lacaze, J., Monceau, D., Vaissière, L. (2018). High-temperature oxidation of a high silicon SiMo spheroidal cast iron in air with in situ change in H2O content. Mater. Sci. Forum 925, 353-360. https://doi.org/10.4028/www.scientific.net/MSF.925.353

Feret, L.R. (1931). Assoc. Internat. Pour I'Essai des Mat., 2 Group D, Zurich.

Gulzar, A., Akhter, J.I., Ahmad, M., Ali, G., Mahmood, M. Ajmal, M. (2009). Microstructure evolution during surface alloying of ductile iron and austempered ductile iron by electron beam melting. Appl. Surf. Sci. 255 (20), 8527-8532. https://doi.org/10.1016/j.apsusc.2009.06.011

Hsu, C.H., Chen, M.L. (2010). Corrosion behavior of Ni alloyed and austempered ductile iron in 3.5% sodium chloride. Corros. Sci. 52 (9), 2945-2949. https://doi.org/10.1016/j.corsci.2010.05.006

Kim, B.H., Shin, J.S. Lee, S.M., Moon, B.M. (2007). Improvement of tensile strength and corrosion resistance of high-silicon cast Irons by optimizing casting process parameters. J. Mater. Sci. 42, 109-117. https://doi.org/10.1007/s10853-006-1081-9

Lacaze, J., Larrañaga, P., Asenjo, I., Suárez, R., Sertucha, J. (2012). Influence of 1 wt-% addition of Ni on structural and mechanical properties of ferritic ductile irons. Mater. Sci. Technol. 28 (5), 603-608. https://doi.org/10.1179/1743284711Y.0000000100

Larrañaga, P., Sertucha, J. Suárez, R. (2006). Análisis del proceso de solidificación en fundiciones grafíticas esferoidales. Rev. Metal. 42 (4), 244-255. https://doi.org/10.3989/revmetalm.2006.v42.i4.24

Larrañaga, P., Sertucha, J. (2010). Estudio térmico y estructural del proceso de solidificación de fundiciones de hierro con grafito laminar. Rev. Metal. 46 (4), 370-380. https://doi.org/10.3989/revmetalm.0961

Lou, D.C., Akselsen, O.M., Onsøien, M.I., Solberg, J.K., Berget, J. (2006). Surface modification of steel and cast iron to improve corrosion resistance in molten aluminium. Surf. Coat. Technol. 200 (18-19), 5282-5288. https://doi.org/10.1016/j.surfcoat.2005.06.026

Medyński, D., Samociuk, B., Janus, A., Chęcmanowski, J. (2019). Effect of Cr, Mo and Al on microstructure, abrasive wear and corrosion resistance of Ni-Mn-Cu cast iron. Materials 12 (1), 3500. https://doi.org/10.3390/ma12213500 PMid:31731453 PMCid:PMC6862001

Melchers, R.E. (2013). Long-term corrosion of cast irons and steel in marine and atmospheric environments. Corros. Sci. 68, 186-194. https://doi.org/10.1016/j.corsci.2012.11.014

Méndez, S., Arenas, M.A., Niklas, A., González, R., Conde, A., Sertucha, J., de Damborenea, J.J. (2019). Effect of silicon and graphite degeneration on high-temperature oxidation of ductile cast irons in open air. Oxid. Met. 91, 225-242. https://doi.org/10.1007/s11085-018-9875-0

Morcillo, M., de la Fuente, D., Díaz, J., Cano, H. (2011). Atmospheric corrosion of mild steel. Rev. Metal. 47 (5), 426-444. https://doi.org/10.3989/revmetalm.1125

Pourbaix, M., Pourbaix, A. (1989). Recent progress in atmospheric corrosion testing. Corrosion 45 (1), 71-83. https://doi.org/10.5006/1.3577890

Rajani, B., Kleiner, Y. (2003). Protecting ductile-iron water mains: what protection method works best for what soil condition?. J. Am. Water Work Assoc. 95 (11), 110-125. https://doi.org/10.1002/j.1551-8833.2003.tb10497.x

Reynaud, A. (2008). Corrosion & cast irons. Ed. Editions techniques des industries de la fonderie, Sèvres, France, p. 11.

Sertucha, J., Suárez, R. (2005). Arenas de moldeo en verde. Ed. Azterlan, Durango, España, pp. 264-267.

Sertucha, J., Larrañaga, P., Lacaze, J., Insausti, M. (2010). Experimental investigation on the effect of copper upon eutectoid transformation of as-cast and austenitized spheroidal graphite cast iron. Int. J. Met. 4, 51-58. https://doi.org/10.1007/BF03355486

Sertucha, J., Lacaze, J., Serrallach, J., Suárez, R. Osuna, F. (2012). Effect of alloying on mechanical properties of as cast ferritic nodular cast irons. Mater. Sci. Technol. 28 (2), 184-191. https://doi.org/10.1179/1743284711Y.0000000014

Stawarz, M., Dojka, M. (2022). Corrosion resistance of selected cast iron grades under deposit mining conditions. Int. J. Met. 16, 342-348. https://doi.org/10.1007/s40962-021-00607-6

Sun, Y., Hu, S., Xiao, Z., You, S., Zhao, J., Lv, Y. (2012). Effects of Ni on low-temperature impact toughness and corrosion resistance of high-ductility ductile iron. Mater. Design 41, 37-42. https://doi.org/10.1016/j.matdes.2012.03.039

Takamori, S., Osawa, Y., Halada, K. (2002). Aluminum-alloyed cast iron as a versatile alloy. Mater. Trans. 43 (3), 311-314. https://doi.org/10.2320/matertrans.43.311

Tiedje, N.S. (2010). Solidification, processing and properties of ductile cast iron. Mater. Sci. Technol. 26 (5), 505-514. https://doi.org/10.1179/026708310X12668415533649

Zhou, Y., Lu, Z., Zhan, M. (2007). An investigation of the erosion-corrosion characteristics of ductile cast iron. Mater. Design 28 (1), 260-265. https://doi.org/10.1016/j.matdes.2005.07.011



How to Cite

Niklas, A. ., Arenas, M. Ángeles ., Méndez, S. ., Conde, A. ., González-Martínez, R. ., de Damborenea, J. J. ., & Sertucha, J. . (2022). Effect of alloying with Ni, Cr and Al on the atmospheric and electrochemical corrosion resistance of ferritic ductile cast irons. Revista De Metalurgia, 58(1), e216. https://doi.org/10.3989/revmetalm.216