Characterization of chilean copper slag smelting nineteenth century
DOI:
https://doi.org/10.3989/revmetalm.083Keywords:
Abandoned landfills, Characterization, Chilean smelters, Copper slagAbstract
The aim of this work is to characterize four copper smelters slag nineteenth century, from abandoned landfills in Atacama Region - Chile, using the techniques of X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), particle analysis by laser diffraction (ADL), Fourier Transform Infrared Spectroscopy (FTIR) and thermogravimetric analysis (TGA). Copper slags studied were chemically classified as acidic slags, this slags presented higher SiO2 content (38–49%) than Fe2O3 (18–37%) and a significant amount of CaO (8–26%) and Al2O3 (8.5%). Mineralogy and structure was varied, presenting one of them an amorphous structure and the remaining three, a crystalline structure with partially amorphous character. The majority mineral phases presented in the copper slag were diopside, fayalite, magnetite, cristobalite and clinoferrosilita. Calcium levels indicate that the slags could have cementitious properties for use as a binder in construction materials. Moreover, the significant amount of slag available and CuO content (0.6–1.2%) show that may be of interest as raw material for metal recovery.
Downloads
References
Al-Jabri, K.S., Al-Saidy, A.H., Taha, R. (2011). Effect of copper slag as a fine aggregate on the properties of cement mortars and concrete. Constr. Build. Mater. 25 (2), 933–938. https://doi.org/10.1016/j.conbuildmat.2010.06.090
Ambler, J.O. (1920). Metalurgical Bookkeeping, Professional Degree, University of Missouri, Rolla, Missouri, USA.
Aracena, F.M. (1884). Apuntes de viaje: La industria del cobre en la Provincias de Atacama y Coquimbo, Valparaíso, Chile.
Ari-o, A.M., Mobasher, B. (1999). Effect of ground copper slag on strength and toughness of cementitious mixes. ACI Mater. J. 96 (1), 68–73.
Arslan, C., Arslan, F. (2002). Recovery of copper, cobalt, and zinc from copper smelter and converter slags. Hydrometallurgy 67 (1-3), 1–7. https://doi.org/10.1016/S0304-386X(02)00139-1
Banza, A., Gock, E., Kongolo, K. (2002). Base metals recovery from copper smelter slag by oxidising leaching and solvent extraction. Hydrometallurgy 67 (1-3), 63–69. https://doi.org/10.1016/S0304-386X(02)00138-X
Cao, H., Wang, J., Zhang, L., Sui, Z. (2012). Study on Green Enrichment and Separation of Copper and Iron Components from Copper Converter Slag. Procedia Environ. Sci. 16, 740–748. https://doi.org/10.1016/j.proenv.2012.10.101
Chen, M., Han, Z., Wang, L. (2011). Recovery of valuable metals from copper slag by hydrometallurgy. Adv. Mat. Res. 402, 35–40. http://dx.doi.org/10.4028/www.scientific.net/AMR.402.35. https://doi.org/10.4028/www.scientific.net/AMR.402.35
Choi, S.C., Lee, W.K. (2013). Effect of CaO and Fe2O3 on the Geopolymer Made from Mine Tailing and Melting Slag. J. Korea Soc. Waste Manag. 30 (6), 572–577. https://doi.org/10.9786/kswm.2013.30.6.572
Darder, M., Gonzalez-Alfaro, Y., Aranda, P., Ruiz-Hitzky, E. (2014). Silicate-based multifunctional nanostructured materials with magnetite and Prussian blue: application to cesium uptake. RSC Adv. 4, 35415–35421. https://doi.org/10.1039/C4RA06023G
Fernández-Jiménez, A. (2000). Cementos de escorias activadas alcalinamente: influencia de las variables y modelización del proceso, Tesis Doctoral, Universidad Autónoma de Madrid, Madrid, Espa-a.
Jun-wei, S. (2013). Study on the effect of copper slag admixtures to properties and structure of concrete. Inform. Technol. J. 12 (23), 7396–7400. https://doi.org/10.3923/itj.2013.7396.7400
Khater, H.M. (2012). Effect of calcium on geopolymerization of aluminosilicate wastes. J. Mater. Civil Eng. 24 (1), 92–101. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000352
Kim, B.-S., Jo, S.-K., Shin, D., Lee, J.-C., Jeong, S.-B. (2013). A physico-chemical separation process for upgrading iron from waste copper slag. Int. J. Miner. Process. 124, 124–127. https://doi.org/10.1016/j.minpro.2013.05.009
Komnitsas, K., Zaharaki, D., Bartzas, G. (2013). Effect of sulphate and nitrate anions on heavy metal immobilization in ferronickel slag geopolymers. Appl. Clay Sci. 73, 103–109. https://doi.org/10.1016/j.clay.2012.09.018
Li, K., Ping, S., Wang, H., Ni, W. (2013). Recovery of iron from copper slag by deep reduction and magnetic beneficiation. Int. J. Miner. Metall. Mater. 20 (11), 1035–1041. https://doi.org/10.1007/s12613-013-0831-3
Marghussian, V., Maghsoodipoor, A. (1999). Fabrication of unglazed floor tiles containing Iranian copper slags. Ceram. Int. 25 (7), 617-622. https://doi.org/10.1016/S0272-8842(98)00075-3
Marín Vicu-a, S. (1920). La industria del cobre en Chile : Problemas Nacionales, Impr. Universitaria, Santiago de Chile.
Merkus, H. (2009). Particle Size Measurements. Fundamentals, Practice, Quality, Particle Technology Series. Vol 17, Springer, Netherlands.
Mihailova, I., Mehandjiev, D. (2010). Characterization of fayalite from copper slag. J. Univ. Chem. Technol. Metall. 45, 317-326.
Mithun, B.M., Narasimhan, M.C. (2016). Performance of alkali activated slag concrete mixes incorporating copper slag as fine aggregate. J. Clean. Prod. 112 (Part. 1), 837-844. https://doi.org/10.1016/j.jclepro.2015.06.026
Murari, K., Siddique, R., Jain, K.K. (2015). Use of waste copper slag, a sustainable material. J. Mater. Cycles Waste 17 (1), 13-26. https://doi.org/10.1007/s10163-014-0254-x
Nadirov, R.K., Syzdykova, L.I., Zhussupova, A.K., Usserbaev, M.T. (2013). Recovery of value metals from copper smelter slag by ammonium chloride treatment. Int. J. Miner. Process. 124, 145-149. https://doi.org/10.1016/j.minpro.2013.07.009
Nath, S.K., Kumar, S. (2013). Influence of iron making slags on strength and microstructure of fly ash geopolymer. Constr. Build. Mater. 38, 924-930. https://doi.org/10.1016/j.conbuildmat.2012.09.070
Nazer, A., Fuentes, S., Castillo, P., Gonz·lez, L., Pavez, O., Varela, O., Lanas, O. (2012). Baldosas de escorias de cobre. Innovación en producción limpia. Iberoam. J. Proj. Manag. 3 (2), 12.
Nazer, A., Pavez, O., Toledo, I. (2013). Effect of type cement on the mechanical strength of copper slag mortars. Revista Escola de Minas 66 (1), 85-90. http://www.redalyc.org/articulo.oa?id=56425762011. https://doi.org/10.1590/S0370-44672013000100011
Nazer, A., Pay·, J., Borrachero, M.V., Monzó, J. (2016). Use of ancient copper slags in Portland cement and alkali activated cement matrices. J. Environ. Manage. 167, 115-123. https://doi.org/10.1016/j.jenvman.2015.11.024 PMid:26615227
Onuaguluchi, O. (2012). Properties of Cement Based Materials Containing Copper Tailings, Doctoral Dissertation, Eastern Mediterranean University, North Cyprus, Turkey.
Panda, S., Mishra, S., Rao, D.S., Pradhan, N., Mohapatra, U., Angadi, S., Mishra, B.K. (2015). Extraction of copper from copper slag: Mineralogical insights, physical beneficiation and bioleaching studies. Korean J. Chem. Eng. 32 (4), 667-676. https://doi.org/10.1007/s11814-014-0298-6
Piatak, N.M., Parsons, M.B., Seal II, R.R. (2015). Characteristics and environmental aspects of slag: A review. Appl. Geochem. 57, 236-266. https://doi.org/10.1016/j.apgeochem.2014.04.009
Ros-Latienda, L., Fernández-Carrasquilla, J. (2013). Caracterización de escorias metalúrgicas procedentes de yacimientos arqueológicos de Navarra (Siglos II a. C.- IV d. C). Rev. Metal. 49 (6), 438-448. https://doi.org/10.3989/revmetalm.1302
Rudnik, E., BurzyDska, L., Gumowska, W. (2009). Hydrometallurgical recovery of copper and cobalt from reductionroasted copper converter slag. Miner. Eng. 22 (1), 88-95. https://doi.org/10.1016/j.mineng.2008.04.016
Sakulich, A.R., Anderson, E., Schauer, C., Barsoum, M.W. (2009). Mechanical and microstructural characterization of an alkali-activated slag/limestone fine aggregate concrete. Constr. Build. Mater. 23, 2951-2957. https://doi.org/10.1016/j.conbuildmat.2009.02.022
Sánchez de Rojas, M., Rivera, J., Frías, M., Marín, F. (2008). Use of recycled copper slag for blended cements. J. Chem. Technol. Biot. 83 (3), 209-217. https://doi.org/10.1002/jctb.1830
Shi, C., Meyer, C., Behnood, A. (2008). Utilization of copper slag in cement and concrete. Resour. Conserv. Recy. 52 (10), 1115-1120. https://doi.org/10.1016/j.resconrec.2008.06.008
Shi, C., Qian, J. (2000). High performance cementing materials from industrial slags - A review. Resour. Conserv. Recy. 29 (3), 195-207. https://doi.org/10.1016/S0921-3449(99)00060-9
Sociedad Nacional de MinerÌa (1894). Datos estadÌsticos sobre las minas i f·bricas metal˙rgicas de la Rep˙blica de Chile correspondientes al a-o 1893. Publicaciones de la Exposición de MinerÌa i Metalurgia de Santiago, Imprenta Nacional, Santiago de Chile.
Taha, R.A., Alnuaimi, A.S., Al-Jabri, K.S., Al-Harthy, A.S. (2007). Evaluation of controlled low strength materials containing industrial by-products. Build. Environ. 42 (9), 3366-3372. https://doi.org/10.1016/j.buildenv.2006.07.028
Thomas, B.S., Gupta, R.C. (2013). Mechanical properties and durability characteristics of concrete containing solid waste materials. J. Clean. Prod. 1-6. https://doi.org/10.1016/j.jclepro.2013.11.019
Tixier, R., Devaguptapu, R., Mobasher, B. (1997). The effect of copper slag on the hydration and mechanical properties of cementitious mixtures. Cement. Concrete Res. 27 (10), 1569-1580. https://doi.org/10.1016/S0008-8846(97)00166-X
UNE 80103 (2013). Test methods of cements. Physical analysis. Actual density determination, AENOR.
UNE-EN 196-2 (2014). Métodos de ensayo de cementos. Parte 2: Análisis químico de Cementos, AENOR.
Velázquez, S. (2002). Aplicaciones del catalizador de craqueo catalÌtico usado (FCC) en la preparación de conglomerantes hidráulicos. Estudio de sus propiedades puzolánicas. Tesis Doctoral, Universitat Politecnica de Valencia, Espa-a.
Vicu-a Mackenna, B. (1882). El libro de la plata. Imprenta Cervantes, Santiago de Chile.
Yang, H., Fang, K., Tu, S. (2010a). Copper slag with high MgO as pozzolanic material: Soundness, pozzolanic activity and microstructure development. J. Wuhan Univ. Technol. 32 (17), 94-98.
Yang, Z., Rui-lin, M., Wang-dong, N., Hui, W. (2010b). Selective leaching of base metals from copper smelter slag. Hydrometallurgy 103 (1-4), 25-29. https://doi.org/10.1016/j.hydromet.2010.02.009
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.