Caracterización de escorias de cobre de fundiciones chilenas del Siglo XIX

Autores/as

  • Amin Nazer Universitat Politècnica de València, Instituto de Ciencia y Tecnología del Hormigón (ICITECH) - Universidad de Atacama, Facultad Tecnológica, Departamento de Construcción
  • Jordi Payá Universitat Politècnica de València, Instituto de Ciencia y Tecnología del Hormigón (ICITECH)
  • María Victoria Borrachero Universitat Politècnica de València, Instituto de Ciencia y Tecnología del Hormigón (ICITECH)
  • José Monzó Universitat Politècnica de València, Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

DOI:

https://doi.org/10.3989/revmetalm.083

Palabras clave:

Caracterización, Escorias de cobre, Fundiciones chilenas, Vertederos abandonados

Resumen


El objetivo de este trabajo es caracterizar 4 escorias de fundiciones de cobre del siglo XIX, procedentes de vertederos abandonados en la Región de Atacama - Chile, utilizando las técnicas de fluorescencia de rayos X (FRX), difracción de rayos X (DRX), microscopía electrónica de barrido (SEM), análisis de partículas por difracción láser (ADL), espectrometría infrarroja por transformadas de Fourier (FTIR) y análisis termogravimétrico (ATG). Las escorias de cobre estudiadas fueron clasificadas químicamente como escorias ácidas, con mayor contenido de SiO2 (38 - 49%) que de Fe2O3 (18 - 37%), y con una importante cantidad de CaO (8-26%) y Al2O3 (5-8%). Su mineralogía y estructura es variada, presentando una de ellas una estructura amorfa y las tres restantes, una estructura cristalina con cierto carácter amorfo. Las fases minerales mayoritarias presentes en las escorias de cobre son diópsido, fayalita, magnetita, cristobalita y clinoferrosilita. Los niveles de calcio indicarían que las escorias poseen propiedades cementantes para ser utilizadas en materiales de construcción. Además, la importante cantidad de escoria disponible y el contenido de CuO (0,6 - 1,2%) muestran que puede ser de interés como materia prima en la recuperación del metal.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Al-Jabri, K.S., Al-Saidy, A.H., Taha, R. (2011). Effect of copper slag as a fine aggregate on the properties of cement mortars and concrete. Constr. Build. Mater. 25 (2), 933–938. https://doi.org/10.1016/j.conbuildmat.2010.06.090

Ambler, J.O. (1920). Metalurgical Bookkeeping, Professional Degree, University of Missouri, Rolla, Missouri, USA.

Aracena, F.M. (1884). Apuntes de viaje: La industria del cobre en la Provincias de Atacama y Coquimbo, Valparaíso, Chile.

Ari-o, A.M., Mobasher, B. (1999). Effect of ground copper slag on strength and toughness of cementitious mixes. ACI Mater. J. 96 (1), 68–73.

Arslan, C., Arslan, F. (2002). Recovery of copper, cobalt, and zinc from copper smelter and converter slags. Hydrometallurgy 67 (1-3), 1–7. https://doi.org/10.1016/S0304-386X(02)00139-1

Banza, A., Gock, E., Kongolo, K. (2002). Base metals recovery from copper smelter slag by oxidising leaching and solvent extraction. Hydrometallurgy 67 (1-3), 63–69. https://doi.org/10.1016/S0304-386X(02)00138-X

Cao, H., Wang, J., Zhang, L., Sui, Z. (2012). Study on Green Enrichment and Separation of Copper and Iron Components from Copper Converter Slag. Procedia Environ. Sci. 16, 740–748. https://doi.org/10.1016/j.proenv.2012.10.101

Chen, M., Han, Z., Wang, L. (2011). Recovery of valuable metals from copper slag by hydrometallurgy. Adv. Mat. Res. 402, 35–40. http://dx.doi.org/10.4028/www.scientific.net/AMR.402.35. https://doi.org/10.4028/www.scientific.net/AMR.402.35

Choi, S.C., Lee, W.K. (2013). Effect of CaO and Fe2O3 on the Geopolymer Made from Mine Tailing and Melting Slag. J. Korea Soc. Waste Manag. 30 (6), 572–577. https://doi.org/10.9786/kswm.2013.30.6.572

Darder, M., Gonzalez-Alfaro, Y., Aranda, P., Ruiz-Hitzky, E. (2014). Silicate-based multifunctional nanostructured materials with magnetite and Prussian blue: application to cesium uptake. RSC Adv. 4, 35415–35421. https://doi.org/10.1039/C4RA06023G

Fernández-Jiménez, A. (2000). Cementos de escorias activadas alcalinamente: influencia de las variables y modelización del proceso, Tesis Doctoral, Universidad Autónoma de Madrid, Madrid, Espa-a.

Jun-wei, S. (2013). Study on the effect of copper slag admixtures to properties and structure of concrete. Inform. Technol. J. 12 (23), 7396–7400. https://doi.org/10.3923/itj.2013.7396.7400

Khater, H.M. (2012). Effect of calcium on geopolymerization of aluminosilicate wastes. J. Mater. Civil Eng. 24 (1), 92–101. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000352

Kim, B.-S., Jo, S.-K., Shin, D., Lee, J.-C., Jeong, S.-B. (2013). A physico-chemical separation process for upgrading iron from waste copper slag. Int. J. Miner. Process. 124, 124–127. https://doi.org/10.1016/j.minpro.2013.05.009

Komnitsas, K., Zaharaki, D., Bartzas, G. (2013). Effect of sulphate and nitrate anions on heavy metal immobilization in ferronickel slag geopolymers. Appl. Clay Sci. 73, 103–109. https://doi.org/10.1016/j.clay.2012.09.018

Li, K., Ping, S., Wang, H., Ni, W. (2013). Recovery of iron from copper slag by deep reduction and magnetic beneficiation. Int. J. Miner. Metall. Mater. 20 (11), 1035–1041. https://doi.org/10.1007/s12613-013-0831-3

Marghussian, V., Maghsoodipoor, A. (1999). Fabrication of unglazed floor tiles containing Iranian copper slags. Ceram. Int. 25 (7), 617-622. https://doi.org/10.1016/S0272-8842(98)00075-3

Marín Vicu-a, S. (1920). La industria del cobre en Chile : Problemas Nacionales, Impr. Universitaria, Santiago de Chile.

Merkus, H. (2009). Particle Size Measurements. Fundamentals, Practice, Quality, Particle Technology Series. Vol 17, Springer, Netherlands.

Mihailova, I., Mehandjiev, D. (2010). Characterization of fayalite from copper slag. J. Univ. Chem. Technol. Metall. 45, 317-326.

Mithun, B.M., Narasimhan, M.C. (2016). Performance of alkali activated slag concrete mixes incorporating copper slag as fine aggregate. J. Clean. Prod. 112 (Part. 1), 837-844. https://doi.org/10.1016/j.jclepro.2015.06.026

Murari, K., Siddique, R., Jain, K.K. (2015). Use of waste copper slag, a sustainable material. J. Mater. Cycles Waste 17 (1), 13-26. https://doi.org/10.1007/s10163-014-0254-x

Nadirov, R.K., Syzdykova, L.I., Zhussupova, A.K., Usserbaev, M.T. (2013). Recovery of value metals from copper smelter slag by ammonium chloride treatment. Int. J. Miner. Process. 124, 145-149. https://doi.org/10.1016/j.minpro.2013.07.009

Nath, S.K., Kumar, S. (2013). Influence of iron making slags on strength and microstructure of fly ash geopolymer. Constr. Build. Mater. 38, 924-930. https://doi.org/10.1016/j.conbuildmat.2012.09.070

Nazer, A., Fuentes, S., Castillo, P., Gonz·lez, L., Pavez, O., Varela, O., Lanas, O. (2012). Baldosas de escorias de cobre. Innovación en producción limpia. Iberoam. J. Proj. Manag. 3 (2), 12.

Nazer, A., Pavez, O., Toledo, I. (2013). Effect of type cement on the mechanical strength of copper slag mortars. Revista Escola de Minas 66 (1), 85-90. http://www.redalyc.org/articulo.oa?id=56425762011. https://doi.org/10.1590/S0370-44672013000100011

Nazer, A., Pay·, J., Borrachero, M.V., Monzó, J. (2016). Use of ancient copper slags in Portland cement and alkali activated cement matrices. J. Environ. Manage. 167, 115-123. https://doi.org/10.1016/j.jenvman.2015.11.024 PMid:26615227

Onuaguluchi, O. (2012). Properties of Cement Based Materials Containing Copper Tailings, Doctoral Dissertation, Eastern Mediterranean University, North Cyprus, Turkey.

Panda, S., Mishra, S., Rao, D.S., Pradhan, N., Mohapatra, U., Angadi, S., Mishra, B.K. (2015). Extraction of copper from copper slag: Mineralogical insights, physical beneficiation and bioleaching studies. Korean J. Chem. Eng. 32 (4), 667-676. https://doi.org/10.1007/s11814-014-0298-6

Piatak, N.M., Parsons, M.B., Seal II, R.R. (2015). Characteristics and environmental aspects of slag: A review. Appl. Geochem. 57, 236-266. https://doi.org/10.1016/j.apgeochem.2014.04.009

Ros-Latienda, L., Fernández-Carrasquilla, J. (2013). Caracterización de escorias metalúrgicas procedentes de yacimientos arqueológicos de Navarra (Siglos II a. C.- IV d. C). Rev. Metal. 49 (6), 438-448. https://doi.org/10.3989/revmetalm.1302

Rudnik, E., BurzyDska, L., Gumowska, W. (2009). Hydrometallurgical recovery of copper and cobalt from reductionroasted copper converter slag. Miner. Eng. 22 (1), 88-95. https://doi.org/10.1016/j.mineng.2008.04.016

Sakulich, A.R., Anderson, E., Schauer, C., Barsoum, M.W. (2009). Mechanical and microstructural characterization of an alkali-activated slag/limestone fine aggregate concrete. Constr. Build. Mater. 23, 2951-2957. https://doi.org/10.1016/j.conbuildmat.2009.02.022

Sánchez de Rojas, M., Rivera, J., Frías, M., Marín, F. (2008). Use of recycled copper slag for blended cements. J. Chem. Technol. Biot. 83 (3), 209-217. https://doi.org/10.1002/jctb.1830

Shi, C., Meyer, C., Behnood, A. (2008). Utilization of copper slag in cement and concrete. Resour. Conserv. Recy. 52 (10), 1115-1120. https://doi.org/10.1016/j.resconrec.2008.06.008

Shi, C., Qian, J. (2000). High performance cementing materials from industrial slags - A review. Resour. Conserv. Recy. 29 (3), 195-207. https://doi.org/10.1016/S0921-3449(99)00060-9

Sociedad Nacional de MinerÌa (1894). Datos estadÌsticos sobre las minas i f·bricas metal˙rgicas de la Rep˙blica de Chile correspondientes al a-o 1893. Publicaciones de la Exposición de MinerÌa i Metalurgia de Santiago, Imprenta Nacional, Santiago de Chile.

Taha, R.A., Alnuaimi, A.S., Al-Jabri, K.S., Al-Harthy, A.S. (2007). Evaluation of controlled low strength materials containing industrial by-products. Build. Environ. 42 (9), 3366-3372. https://doi.org/10.1016/j.buildenv.2006.07.028

Thomas, B.S., Gupta, R.C. (2013). Mechanical properties and durability characteristics of concrete containing solid waste materials. J. Clean. Prod. 1-6. https://doi.org/10.1016/j.jclepro.2013.11.019

Tixier, R., Devaguptapu, R., Mobasher, B. (1997). The effect of copper slag on the hydration and mechanical properties of cementitious mixtures. Cement. Concrete Res. 27 (10), 1569-1580. https://doi.org/10.1016/S0008-8846(97)00166-X

UNE 80103 (2013). Test methods of cements. Physical analysis. Actual density determination, AENOR.

UNE-EN 196-2 (2014). Métodos de ensayo de cementos. Parte 2: Análisis químico de Cementos, AENOR.

Velázquez, S. (2002). Aplicaciones del catalizador de craqueo catalÌtico usado (FCC) en la preparación de conglomerantes hidráulicos. Estudio de sus propiedades puzolánicas. Tesis Doctoral, Universitat Politecnica de Valencia, Espa-a.

Vicu-a Mackenna, B. (1882). El libro de la plata. Imprenta Cervantes, Santiago de Chile.

Yang, H., Fang, K., Tu, S. (2010a). Copper slag with high MgO as pozzolanic material: Soundness, pozzolanic activity and microstructure development. J. Wuhan Univ. Technol. 32 (17), 94-98.

Yang, Z., Rui-lin, M., Wang-dong, N., Hui, W. (2010b). Selective leaching of base metals from copper smelter slag. Hydrometallurgy 103 (1-4), 25-29. https://doi.org/10.1016/j.hydromet.2010.02.009

Publicado

2016-12-30

Cómo citar

Nazer, A., Payá, J., Borrachero, M. V., & Monzó, J. (2016). Caracterización de escorias de cobre de fundiciones chilenas del Siglo XIX. Revista De Metalurgia, 52(4), e083. https://doi.org/10.3989/revmetalm.083

Número

Sección

Artículos