Study of the thickness evolution during SPT Testing

Authors

DOI:

https://doi.org/10.3989/revmetalm.110

Keywords:

316L stainless steel, FEM (Finite Elements Modelling), SLM (Selective Laser Melting) additive manufacturing, SPT (Small Punch Test), Thickness variation

Abstract


The Small Punch Test (SPT) is an increasingly expanding test used to obtain different mechanical data, such as strength, fracture, creep, etc…especially when there is little material available. However, the SPT test is more complicated than the uniaxial tensile test due to its non-linearity, which makes it difficult to relate the data obtained with the tensile tests. In fact, in the literature there is no clear model linking these tests and a different calibration should be used for each material. The complication of the SPT test is that the reduction of the sample thickness is not homogeneous in its gauge volume. In this work we proceeded to determine the variation of the SPT specimen thickness at several points, especially at the center and at the rupture zone, by means of the use of finite elements in COMSOL, taking a SLM AM (selective laser melting additive manufactured) 316L stainless steel as the base material for modelling. For the appropriate modelling in COMSOL, the mechanical parameters of two 316L extreme thermomechanical treatments have been implemented, one annealed to a minimum hardness and another heavily work-hardened. The sample thickness variation results allow advancing in the theoretical modeling of the SPT behavior in order to obtain more accurate correlations with tensile tests data.

Downloads

Download data is not yet available.

References

Alcelay, J.I., Pe-a, E., Al Omar, A. (2016). Estudio del comportamiento termo-mecánico de un acero microlaeado de medio carbono durante un proceso de conformado en caliente usando una red neuronal artificial. Rev. Metal. 52 (2), e066. https://doi.org/10.3989/revmetalm.066

Altstadt, E., Ge, H.E., Kuksenko, V., Serrano, M., Houska, M., Lasan, M., Bruchhausen, M., Lapetite, J.-M., Dai, Y. (2016a). Critical evaluation of the small punch test as a screening procedure for mechanical properties. J. Nucl. Mater. 472, 186–195. https://doi.org/10.1016/j.jnucmat.2015.07.029

Altstadt, E., Serrano, M., Houska, M., García-Junceda, A. (2016b). Effect of anisotropic microstructure of a 12Cr-ODS steel on the fracture behaviour in the small punch test. Mat. Sci. Eng. A-Struct. 654, 309–316. https://doi.org/10.1016/j.msea.2015.12.055

Arroyo, B., Álvarez, J.A., Lacalle, R., Uribe, C., García, T.E., Rodríguez, C. (2017). Analysis of Key Factors of Hydrogen Environmental Assisted Cracking Evaluation by Small Punch Test on Medium and High Strength Steels. Mat. Sci. Eng. A-Struct. https://doi.org/10.1016/j.msea.2017.03.006

Autillo, J., Contreras, M.A., Betegón, C., Rodríguez, C., Belzunce, F. (2006). Utilización del Ensayo Miniatura de Punzonamiento (Small Punch test) en la Caracterización Mecánica de Aceros. Anales de La Mecánica de La Fractura 1, 77–83.

CEN Workshop Agreement (2006). Small Punch Test Method for Metallic Materials. CEN, Belgium, Brussels.

Cisneros-Belmonte, M., Ruiz-Román, J.M., García-Cambronero, L.E. (2016). Aceros sinterizados al Mo con gradiente funcional; Functionally Graded Mo sintered steels. Rev. Metal. 52 (4). https://doi.org/10.3989/revmetalm.081

Díaz, L.A., López, M.E., Rodríguez, C., Belzunce, J., Torrecillas, R. (2009). Síntesis coloidal de materiales nanoestructurados de Al-ZrAl3: Propiedades mecánicas mediante el ensayo miniatura de punzonado. Rev. Metal. 45 (4), 256–266. https://doi.org/10.3989/revmetalm.0813

Du, P., Ling, X., Zhou, Z., Xu, T. (2010) - Study on Influence Factors of Small Punch Test to Estimate the Yield Strenght by Energy model, 1st Internacional Conference SSTT, Ostrava, República Checa.

Fleury, E., Ha, J.S. (1998). Small punch tests to estimate the mechanical properties of steels for steam power plant: I. Mechanical strength. Int. J. Pres. Ves. Pip. 75 (9), 699–706. https://doi.org/10.1016/S0308-0161(98)00074-X

García-Infanta, J.M., Zhilyaev, A.P., Sharafutdinov, A., Ruano, O.A., Carre-o, F. (2009). An evidence of high strain rate superplasticity at intermediate homologous temperatures in an Al-Zn-Mg-Cu alloy processed by high-pressure torsion. J. Alloy Compd. 473 (1–2), 163–166. https://doi.org/10.1016/j.jallcom.2008.06.006

García, T.E., Rodríguez, C., Belzunce, F.J., Suárez, C. (2014). Estimation of the mechanical properties of metallic materials by means of the small punch test. J. Alloy Compd. 582, 708–717. https://doi.org/10.1016/j.jallcom.2013.08.009

Gu, C., Bao, Y., Lin, L. (2017). Cleanliness distribution of high-carbon chromium bearing steel billets and growth behavior of inclusions during solidification. Rev. Metal. 53 (1), e089.

Haroush, S., Priel, E., Moreno, D., Busiba, A., Silverman, I., Turgeman, A., Shneck, R., Gelbstein, Y. (2015). Evaluation of the mechanical properties of SS-316L thin foils by small punch testing and finite element analysis. Mater. Design 83, 75–84. https://doi.org/10.1016/j.matdes.2015.05.049

Lucas, G.E., Okada, A., Kiritani, M. (1986). Parametric analysis of the disc bend test. J. Nucl. Mater. 141–143 (Part 1), 532–535. https://doi.org/10.1016/S0022-3115(86)80096-4

Ma, Y.W., Yoon, K.B. (2010). Assessment of tensile strength using small punch test for transversely isotropic aluminum 2024 alloy produced by equal channel angular pressing. Mat. Sci. Eng. A-Struct. 527 (16–17), 3630–3638. https://doi.org/10.1016/j.msea.2010.02.057

Manahan, M.P., Argon, A.S., Harling, O.K. (1981). The development of a miniaturized disk bend test for the determination of postirradiation mechanical properties. J. Nucl. Mater. 104, 1545–1550. https://doi.org/10.1016/0022-3115(82)90820-0

Mao, X., Takahashi, H. (1987). Development of a further-miniaturized specimen of 3 mm diameter for tem disk (ø 3 mm) small punch tests. J. Nucl. Mater. 150 (1), 42–52. https://doi.org/10.1016/0022-3115(87)90092-4

Martínez-Pa-eda, E., Cuesta, I.I., Pe-uelas, I., Díaz, A., Alegre, J.M. (2016). Damage modeling in Small Punch Test specimens. Theor. Appl. Fract. Mec. 86 (Part A), 51–60. https://doi.org/10.1016/j.tafmec.2016.09.002

Medina, S.F., Quispe, A., Gómez, M. (2015). Precipitation model in microalloyed steels both isothermal and continuous cooling conditions. Rev. Metal. 51 (4), e056. https://doi.org/10.3989/revmetalm.056

Misawa, T., Adachi, T., Saito, M., Hamaguchi, Y. (1987). Small punch tests for evaluating ductile-brittle of irradiated ferritic steels. J. Nucl. Mater. 150 (2), 194–202. https://doi.org/10.1016/0022-3115(87)90075-4

Moreno, M.F., Bertolino, G., Yawny, A. (2016). The significance of specimen displacement definition on the mechanical properties derived from Small Punch Test. Mater. Design 95, 623–631. https://doi.org/10.1016/j.matdes.2016.01.148

Pascual, M., Salas, F., Carcel, F.J., Perales, M., Sánchez, A. (2010). TIG AISI-316 welds using an inert gas welding chamber and different filler metals: Changes in mechanical properties and microstructure. Rev. Metal. 46 (6), 493–498. https://doi.org/10.3989/revmetalmadrid.1005

Puchi-Cabrera, E.S., Saya-Gamboa, R.A., La Barbera-Sosa, J.G., Staia, M.H., Ignoto-Cardinale, V., Berríos-Ortíz, J.A., Mesmacque, G. (2007). Vida a la fatiga de juntas soldadas del acero inoxidable AISI 316L obtenidas mediante el proceso GMAW*. Rev. Metal. 43 (3), 215–227.

Rasche, S., Strobl, S., Kuna, M., Bermejo, R., Lube, T. (2014). Determination of Strength and Fracture Toughness of Small Ceramic Discs Using the Small Punch Test and the Ball-on-three-balls Test. Procedia Mater. Sci. 3, 961–966. https://doi.org/10.1016/j.mspro.2014.06.156

Rodríguez, C.C., Belzunce, F.J. (2012). Estudio de la idoneidad del ensayo miniatura de punzonado para la caracterizacion mecanica de los aceros y de sus uniones soldadas. Dyna 79, 53–60.

Rodríguez, C., Cuesta, I.I., Maspoch, M.L., Belzunce, F.J. (2016). Application of the miniature small punch test for the mechanical characterization of polymer materials. Theor. Appl. Fract. Mec. 86, 78–83. https://doi.org/10.1016/j.tafmec.2016.10.001

Saucedo-Mu-oz, M.L., Komazaki, S., Hashida, T., Lopez-Hirata, V.M. (2015). Small Punch Creep test in a 316 austenitic stainless steel. Rev. Metal. 51 (1), e034. ?trbac, N., Markovi, I., Mitovski, A., Balanovi, L. (2017). The possibilities for reuse of steel scrap in order to obtain blades for knives. Rev. Metal. 53 (1), e086.

Sevim, I. (2016). An experimental study on fracture toughness of resistance spot welded galvanized and ungalvanized DP 450 steel sheets used in automotive body. Rev. Metal. 52 (3), e072. https://doi.org/10.3989/revmetalm.072

Simonovski, I., Holmström, S., Bruchhausen, M. (2017). Small punch tensile testing of curved specimens: Finite element analysis and experiment. Int. J. Mech. Sci. 120, 204–213. https://doi.org/10.1016/j.ijmecsci.2016.11.029

Tsisar, V., Schroer, C., Wedemeyer, O., Skrypnik, A., Konys, J. (2014). Corrosion behavior of austenitic steels 1.4970, 316L and 1.4571 in flowing LBE at 450 and 550ºC with 10–7 mass% dissolved oxygen. J. Nucl. Mater. 454 (1–3), 332–342. https://doi.org/10.1016/j.jnucmat.2014.08.024

Turba, K., Hurst, R., Hähner, P. (2013). Evaluation of the ductile-brittle transition temperature in the NESC-I material using small punch testing. Int. J. Pres. Ves. Pip. 111–112, 155–161. https://doi.org/10.1016/j.ijpvp.2013.07.001

Yang, S., Ling, X., Zheng, Y. (2017). Creep behaviors evaluation of Incoloy 800H by small punch creep test. Mat. Sci. Eng. A-Struct. 685, 1–6. https://doi.org/10.1016/j.msea.2016.12.092

Zhao, G., Huang, Q., Zhou, C., Zhang, Z., Ma, L., Wang, X. (2016). Experiment and simulation analysis of roll-bonded Q235 steel plate. Rev. Metal. 52 (2), e069. https://doi.org/10.3989/revmetalm.069

Zhong, Y., Rännar, L.-E., Liu, L., Koptyug, A., Wikman, S., Olsen, J., Cui, D., Shen, Z. (2017). Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications. J. Nucl. Mater. 486, 234–245. https://doi.org/10.1016/j.jnucmat.2016.12.042

Zhou, X., Pan, W., Mackenzie, D. (2013). Material plastic properties characterization by coupling experimental and numerical analysis of small punch beam tests. Comput. Struct. 118, 59–65. https://doi.org/10.1016/j.compstruc.2012.07.002

Published

2018-03-30

How to Cite

Sánchez-Ávila, D., Barea, R., Candela, N., Álvarez-Leal, M., & Carreño, F. (2018). Study of the thickness evolution during SPT Testing. Revista De Metalurgia, 54(1), e110. https://doi.org/10.3989/revmetalm.110

Issue

Section

Articles