Microstructural evolution and dynamic strain aging (DSA) of Mg-6%Gd-1%Zn alloy during tension and compression testing at intermediate temperatures
DOI:
https://doi.org/10.3989/revmetalm.124Keywords:
Dynamic strain aging, Magnesium alloys, Microstructural evolution, TwinningAbstract
The Mg-6%Gd-1%Zn alloy exhibits flow serrations when strained at intermediate temperatures due to the dynamic strain ageing phenomenon. Such flow serrations during deformation need the simultaneous and competitive movement of diffusing solutes and mobile dislocations. Although the alloy examined has a random texture, tension-compression asymmetry and significantly greater yield stress and work hardening in compression than in tension have been observed. During deformation at intermediate temperatures, and independently of the nature of the stress (tension or compression), the activation of < a >-dislocations and tensile twin systems has been observed. The volume fraction of twins is always higher, however, in the case of compression testing. At the intermediate temperatures where flow serrations are observed, Gd and Zn atoms pin dislocations as well as twins. Above 250 °C, the flow serrations disappear and ɣ]´ and ɣ]´´ precipitates form in the basal plane which increase work hardening.
Downloads
References
Agnew, S.R., Brown, D.W., Tomé, C.N. (2006). Validating a polycrystal model for the elastoplastic response of magnesium alloy AZ31 using in-situ neutron diffraction. Acta Mater. 54 (18), 4841–4852. https://doi.org/10.1016/j.actamat.2006.06.020
Agnew, S.R., Mulay, R.P., Polesak, F.J., Calhoun, C.A., Bhattacharyra, J.J., Clausen, B. (2013). In-situ neutron diffraction and polycrystal plasticity modeling of a Mg–Y–Nd–Zr alloy: Effects of precipitation on individual deformation mechanisms. Acta Mater. 61 (10), 3769–3780. https://doi.org/10.1016/j.actamat.2013.03.010
Ball, E.A., Prangnell, P.B. (1994). Tensile-compressive yield asymmetries in high strength wrought magnesium alloys. Scripta Metall. Mater. 31 (2), 111–116. https://doi.org/10.1016/0956-716X(94)90159-7
Cai, X., Fu, H., Guo, J., Peng, Q. (2014). Negative Strain- Rate Sensitivity of Mg Alloys Containing 18R and 14H Long-Period Stacking-Ordered Phases at Intermediate Temperatures. Metall. Mater. Trans. A 45 (9), 3703–3707. https://doi.org/10.1007/s11661-014-2348-4
Capek, J., Mathis, K., Clausen, B., Barnett, M. (2017). Dependence of twinned volume fraction on loading mode and Schmid factor in randomly textured magnesium. Acta Mater. 130, 319–328. https://doi.org/10.1016/j.actamat.2017.03.017
Christodoulou, N., Chow, C., Turner, P., Tomé, C., Klassen, R. (2002). Analysis of Steady-State Thermal Creep of Zr-2.5Nb Pressure Tube Material. Metall. Mater. Trans. A 33 (4), 1103–1115. https://doi.org/10.1007/s11661-002-0212-4
Clausen, B., Tomé, C.N., Brown, D.W., Agnew, S.R. (2008). Reoritation and stress relaxation due to twinning: Modeling and experimental characterization for Mg. Acta Mater. 56 (11), 2456–2468. https://doi.org/10.1016/j.actamat.2008.01.057
Couling, S.L. (1959). Yield points in a dilute magnesium-thorium alloy. Acta Metall. 7 (2), 133–134. https://ac.els-cdn. com/000161605990121X/1-s2.0-000161605990121X-main. pdf?_tid=7f605387-13bc-42a4-84b7-20b66f273f2f&acdnat =1530689365_46a9e777b153989b946b48fbcf25e6cf.
El Kadiri, H., Oppedal, A.L. (2010). A crystal plasticity theory for latent hardening by glide twinning through dislocation transmutation and twin accommodation effects. J. Mech. Phys. Solids 58 (4), 613–624. https://doi.org/10.1016/j.jmps.2009.12.004
Fang, X.Y., Yi, D.Q., Nie, J.F. (2009). The serrated flow behaviour of Mg-Gd-(Mn-Sc) Alloys. Metall. Mater. Trans. A 40, 2761–2771. https://doi.org/10.1007/s11661-009-9967-1
Gao, L., Chen, R.S., Han, E.H. (2009). Characterization of dynamic strain ageing in Mg- 3.11wt.%Gd alloy. R.A. Nyberg, S.R. Agnew, N.R. Neelameggham, M.O. Pekguleryuz (Eds.), Annual conference of TMS, San Francisco, USA, pp. 269–272.
Garcés, G., O-orbe, E., Pérez, P., Denks, I.A., Adeva, P. (2009). Evolution of internal strain during plastic deformation in magnesium matrix composites. Mat. Sci. Eng. A-Struct. 523 (1–2), 21–26. https://doi.org/10.1016/j.msea.2009.06.026
Garcés, G., O-orbe, E., Pérez, P., Klaus, M., Genzel, C., Adeva, P. (2012a). Influence of SiC particles on compressive deformation of magnesium matrix composites. Mat. Sci. Eng. A-Struct. 533, 119–123. https://doi.org/10.1016/j.msea.2011.10.103
Garcés, G., Onorbe, E., Dobes, F., Pérez, P., Antoranz, J.M., Adeva, P. (2012b). Effect of microstructure on creep behaviour of cast Mg97Y2Zn1 (at.%) alloy. Mat. Sci. Eng. A-Struct. 539, 48–55. https://doi.org/10.1016/j.msea.2012.01.023
Garcés, G., Mu-oz-Morris, M.A., Morris, D.G., Pérez, P., Adeva P. (2015). An examination of strain ageing in a Mg-Y-Zn alloy containing Gd. J. Mater. Sci. 50 (17), 5769–5776. https://doi.org/10.1007/s10853-015-9124-8
Gavras, S., Zhu, S.M., Nie, J.F., Gibson, M.A., Easton M.A. (2016). On the microstructural factors affecting creep resistance of die-cast Mg–La-rare earth (Nd, Y or Gd) alloys. Mat. Sci. Eng. A-Struct. 675, 65–75. https://doi.org/10.1016/j.msea.2016.08.046
Geng, J., Chun, Y.B., Stanford, N., Davies, C.H.J., Nie, J.F., Barnett, M.R. (2011). Processing and properties of Mg–6Gd–1Zn–0.6Zr: Part 2. Mechanical properties and particle twin interactions. Mat. Sci. Eng. A-Struct. 528 (10–11), 3659–3665. https://doi.org/10.1016/j.msea.2011.01.024
Gharghouri, M.A., Weatherly, G.C., Embury, J.D., Root, J. (1999). Study of the mechanical properties of Mg-7.7at.% Al by in-situ neutron diffraction. Philos. Mag. A 79 (7), 1671–1695. https://doi.org/10.1080/01418619908210386
Griffiths, D. (2015). Explaining texture weakening and improved formability in magnesium rare earth alloys. Mater. Sci. Technol. 31 (1), 10–24. https://doi.org/10.1179/1743284714Y.0000000632
Hantzsche, K., Bohlen, J., Wendt, J., Kainer, K.U., Yi, S.B., Letzig, D. (2010). Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets. Scripta Mater. 63 (7), 725–730. https://doi.org/10.1016/j.scriptamat.2009.12.033
He, S.H., Zeng, X.Q., Peng, L.M., Gao, X., Nie, J.F., Ding, W.J. (2007). Microstructure and strengthening mechanism of high strength Mg–10Gd–2Y–0.5Zr alloy. J. Alloys Compd. 427 (1–2), 316–323. https://doi.org/10.1016/j.jallcom.2006.03.015
Herrera-Solaz, V., Hidalgo-Manrique, P., Pérez-Prado, M.T., Letzig, D., Llorca, J., Segurado, J. (2014). Effect of rare earth additions on the critical resolved shear stresses of magnesium alloys. Mater. Lett. 128, 199–203. https://doi.org/10.1016/j.matlet.2014.04.144
Hidalgo-Manrique, P., Robson, J.D., Pérez-Prado, M.T. (2017). Precipitation strengthening and reversed yield stress asymmetry in Mg alloys containing rare-earth elements: A quantitative study. Acta Mater. 124, 456–467. https://doi.org/10.1016/j.actamat.2016.11.019
Humphreys, A.O., Liu, D., Toroghinejad, M.R., Essadiqi, E., Jonas, J.J. (2003). Warm rolling behaviour of low carbon steels. Mater. Sci. Technol. 19 (6), 709–714. https://doi.org/10.1179/026708303225002848
Jiang, L., Jonas, J.J., Mishra, R. (2011). Effect of dynamic strain aging on the appearance of the rare earth texture component in magnesium alloys. Mat. Sci. Eng. A-Struct. 528 (21), 6596–6605. https://doi.org/10.1016/j.msea.2011.05.027
Kada, S.R., Lynch, P.A., Kimpton, J.A., Barnett, M.R. (2016). In-situ X-ray diffraction studies of slip and twinning in the presence of precipitates in AZ91 alloy. Acta Mater. 119, 145–156. https://doi.org/10.1016/j.actamat.2016.08.022
Karaman, I., Sehitoglu, H., Beaudoin, A.J., Chumlyakov, Y.I., Maier, H.J., Tomé, C.N. (2000). Modeling the deformation behaviour of hadfield steel single and polycrystals due to twinning and slip. Acta Mater. 48 (9), 2031–2047. https://doi.org/10.1016/S1359-6454(00)00051-3
Kelley, E.W, Hosford, W.F. (1968). Plane-strain compression of magnesium and magnesium alloy crystals. Trans. Metall. Soc. AIME 242, 5–13.
Keshavarz, Z., Barnett, M.R. (2006). EBSD analysis of deformation modes in Mg–3Al– 1Zn. Scripta Mater. 55 (10), 915–918. https://doi.org/10.1016/j.scriptamat.2006.07.036
Lentz, M., Klaus, M., Wanger, M., Fahreson, C., Beyerlein, I.J., Zecevic, M., Reimers, W., Knezevic, M. (2015). Effect of age hardening on the deformation behavior of a Mg-Y-Nd alloy: In-situ X-ray diffraction and crystal plasticity modeling. Mat. Sci. Eng. A-Struct. 628, 396–409. https://doi.org/10.1016/j.msea.2015.01.069
Li, Z., Zheng, J., Chen, B. (2016). Unravelling the Structure of ?≤ in Mg-Gd-Zn: An Atomic-scale HAADF-STEM Investigation. Mater. Charact. 120, 345–348. https://doi.org/10.1016/j.matchar.2016.08.011
Nie, J.F., Gao, X., Zhu, S.M. (2005). Enhanced age hardening response and creep resistance of Mg–Gd alloys containing Zn. Scripta Mater. 53 (9), 1049–1053. https://doi.org/10.1016/j.scriptamat.2005.07.004
Nie, J.F., Oh-ishi, K., Gao, X., Hono, K. (2008). Solute segregation and precipitation in a creep-resistant Mg–Gd–Zn alloy. Acta Mater. 56 (20), 6061–6076. https://doi.org/10.1016/j.actamat.2008.08.025
Nie, J.F., Zhu, Y.M., Liu, J.Z., Fang, X.Y. (2013). Periodic Segregation of Solute Atoms in Fully Coherent Twin Boundaries. Science 340 (6135), 957–960. https://doi.org/10.1126/science.1229369 PMid:23704567
Reed-Hill, R.E. (1973). Role of deformation twinning in determining the mechanical properties of metals: The Inhomogeneity of Plastic Deformation. ASM International, Materials Park, OH, USA, p. 285. .
Stanford, N., Atwell, D., Beer, A., Davies, C., Barnett, M.R. (2008). Effect of microalloying with rare-earth elements on the texture of extruded magnesium-based alloys. Scripta Mater. 59 (7), 772–775. https://doi.org/10.1016/j.scriptamat.2008.06.008
Stanford, N., Sabirov, I., Sha, G., La Fontaine, A., Ringer, S., Barnett, M. (2010). Effect of Al and Gd Solutes on the Strain Rate Sensitivity of Magnesium Alloys. Metall. Mater. Trans. A 41 (3), 734–743. https://doi.org/10.1007/s11661-009-0107-8
Somekawa, H., Watanabe, H., Althaf Basha, D., Singh, A., Inoue T. (2017). Effect of twin boundary segregation on damping properties in magnesium alloy. Scripta Mater. 129, 35–38. https://doi.org/10.1016/j.scriptamat.2016.10.019
Tomsett, D.I., Bevis, M. (1969). The formation of stacking faults in {10–12} twins in zinc as a result of slip dislocation-deformation twin interactions. Philos. Mag. A 19 (159), 533–537. https://doi.org/10.1080/14786436908216310
Tu, J., Zhang, S. (2016). On the {10–12} twinning growth mechanism in hexagonal close-packed metals. Mater. Design 96, 143–149. https://doi.org/10.1016/j.matdes.2016.02.002
Zhongjun, W., Weiping, J., Jianzhong, C. (2007). Study on the Deformation Behavior of Mg-3.6% Er Magnesium Alloy. J. Rare Earth 25 (6), 744–748. https://doi.org/10.1016/S1002-0721(08)60019-8
Wang, H., Wang, Q.D., Boehlert, C.J., Yin, D.D., Yuan, J. (2015). Tensile and compressive creep behavior of extruded Mg–10Gd–3Y–0.5Zr (wt.%) alloy. Mater Charact. 99, 25–37. https://doi.org/10.1016/j.matchar.2014.11.006
Wang, F., Agnew, S.R. (2016). Dislocation transmutation by tension twinning in magnesium alloy AZ31. Int. J. Plasticity 81, 63–86. https://doi.org/10.1016/j.ijplas.2016.01.012
Wu, D., Chen, R.S., Han, E.H. (2012). Serrated flow and tensile properties of a Mg–Gd–Zn alloy. Mat. Sci. Eng. A-Struct. 532, 267–274. https://doi.org/10.1016/j.msea.2011.10.090
Yuan, J., Wang, Q., Yin, D., Wang, H., Chen, C., Ye, B. (2013). Creep behavior of Mg–9Gd–1Y–0.5Zr (wt.%) alloy piston by squeeze casting. Mater. Charact. 78, 37–46. https://doi.org/10.1016/j.matchar.2013.01.012
Zhu, S.M., Nie, J.F. (2004). Serrated flow and tensile properties of a Mg–Y–Nd alloy. Scripta Mater. 50 (1), 51–55. https://doi.org/10.1016/j.scriptamat.2003.09.039
Zhu, S.M., Gibson, M.A., Easton, M.A., Nie, J.F. (2010). The relationship between microstructure and creep resistance in die-cast magnesium–rare earth alloys. Scripta Mater. 63 (7), 698–703. https://doi.org/10.1016/j.scriptamat.2010.02.005
Zhu, Y.M., Morton, A.J., Nie, J.F. (2012). Growth and transformation mechanisms of 18R and 14H in Mg–Y–Zn alloys. Acta Mater. 60 (19), 6562–6572. https://doi.org/10.1016/j.actamat.2012.08.022
Zhu, Y.M., Bian, M.Z., Nie, J.F. (2017). Tilt boundaries and associated solute segregation in a Mg-Gd alloy. Acta Mater.127, 505–518. https://doi.org/10.1016/j.actamat.2016.12.032
Zhu, Y.M, Xu, S.W., Nie J.F. (2018). {1011} Twin boundary structure in a Mg-Gd alloy. Acta Mater. 143, 1–12. https://doi.org/10.1016/j.actamat.2017.09.067
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)
This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.