Microstructural evolution and dynamic strain aging (DSA) of Mg-6%Gd-1%Zn alloy during tension and compression testing at intermediate temperatures





Dynamic strain aging, Magnesium alloys, Microstructural evolution, Twinning


The Mg-6%Gd-1%Zn alloy exhibits flow serrations when strained at intermediate temperatures due to the dynamic strain ageing phenomenon. Such flow serrations during deformation need the simultaneous and competitive movement of diffusing solutes and mobile dislocations. Although the alloy examined has a random texture, tension-compression asymmetry and significantly greater yield stress and work hardening in compression than in tension have been observed. During deformation at intermediate temperatures, and independently of the nature of the stress (tension or compression), the activation of < a >-dislocations and tensile twin systems has been observed. The volume fraction of twins is always higher, however, in the case of compression testing. At the intermediate temperatures where flow serrations are observed, Gd and Zn atoms pin dislocations as well as twins. Above 250 °C, the flow serrations disappear and ɣ]´ and ɣ]´´ precipitates form in the basal plane which increase work hardening.


Download data is not yet available.


Agnew, S.R., Brown, D.W., Tomé, C.N. (2006). Validating a polycrystal model for the elastoplastic response of magnesium alloy AZ31 using in-situ neutron diffraction. Acta Mater. 54 (18), 4841–4852. https://doi.org/10.1016/j.actamat.2006.06.020

Agnew, S.R., Mulay, R.P., Polesak, F.J., Calhoun, C.A., Bhattacharyra, J.J., Clausen, B. (2013). In-situ neutron diffraction and polycrystal plasticity modeling of a Mg–Y–Nd–Zr alloy: Effects of precipitation on individual deformation mechanisms. Acta Mater. 61 (10), 3769–3780. https://doi.org/10.1016/j.actamat.2013.03.010

Ball, E.A., Prangnell, P.B. (1994). Tensile-compressive yield asymmetries in high strength wrought magnesium alloys. Scripta Metall. Mater. 31 (2), 111–116. https://doi.org/10.1016/0956-716X(94)90159-7

Cai, X., Fu, H., Guo, J., Peng, Q. (2014). Negative Strain- Rate Sensitivity of Mg Alloys Containing 18R and 14H Long-Period Stacking-Ordered Phases at Intermediate Temperatures. Metall. Mater. Trans. A 45 (9), 3703–3707. https://doi.org/10.1007/s11661-014-2348-4

Capek, J., Mathis, K., Clausen, B., Barnett, M. (2017). Dependence of twinned volume fraction on loading mode and Schmid factor in randomly textured magnesium. Acta Mater. 130, 319–328. https://doi.org/10.1016/j.actamat.2017.03.017

Christodoulou, N., Chow, C., Turner, P., Tomé, C., Klassen, R. (2002). Analysis of Steady-State Thermal Creep of Zr-2.5Nb Pressure Tube Material. Metall. Mater. Trans. A 33 (4), 1103–1115. https://doi.org/10.1007/s11661-002-0212-4

Clausen, B., Tomé, C.N., Brown, D.W., Agnew, S.R. (2008). Reoritation and stress relaxation due to twinning: Modeling and experimental characterization for Mg. Acta Mater. 56 (11), 2456–2468. https://doi.org/10.1016/j.actamat.2008.01.057

Couling, S.L. (1959). Yield points in a dilute magnesium-thorium alloy. Acta Metall. 7 (2), 133–134. https://ac.els-cdn. com/000161605990121X/1-s2.0-000161605990121X-main. pdf?_tid=7f605387-13bc-42a4-84b7-20b66f273f2f&acdnat =1530689365_46a9e777b153989b946b48fbcf25e6cf.

El Kadiri, H., Oppedal, A.L. (2010). A crystal plasticity theory for latent hardening by glide twinning through dislocation transmutation and twin accommodation effects. J. Mech. Phys. Solids 58 (4), 613–624. https://doi.org/10.1016/j.jmps.2009.12.004

Fang, X.Y., Yi, D.Q., Nie, J.F. (2009). The serrated flow behaviour of Mg-Gd-(Mn-Sc) Alloys. Metall. Mater. Trans. A 40, 2761–2771. https://doi.org/10.1007/s11661-009-9967-1

Gao, L., Chen, R.S., Han, E.H. (2009). Characterization of dynamic strain ageing in Mg- 3.11wt.%Gd alloy. R.A. Nyberg, S.R. Agnew, N.R. Neelameggham, M.O. Pekguleryuz (Eds.), Annual conference of TMS, San Francisco, USA, pp. 269–272.

Garcés, G., O-orbe, E., Pérez, P., Denks, I.A., Adeva, P. (2009). Evolution of internal strain during plastic deformation in magnesium matrix composites. Mat. Sci. Eng. A-Struct. 523 (1–2), 21–26. https://doi.org/10.1016/j.msea.2009.06.026

Garcés, G., O-orbe, E., Pérez, P., Klaus, M., Genzel, C., Adeva, P. (2012a). Influence of SiC particles on compressive deformation of magnesium matrix composites. Mat. Sci. Eng. A-Struct. 533, 119–123. https://doi.org/10.1016/j.msea.2011.10.103

Garcés, G., Onorbe, E., Dobes, F., Pérez, P., Antoranz, J.M., Adeva, P. (2012b). Effect of microstructure on creep behaviour of cast Mg97Y2Zn1 (at.%) alloy. Mat. Sci. Eng. A-Struct. 539, 48–55. https://doi.org/10.1016/j.msea.2012.01.023

Garcés, G., Mu-oz-Morris, M.A., Morris, D.G., Pérez, P., Adeva P. (2015). An examination of strain ageing in a Mg-Y-Zn alloy containing Gd. J. Mater. Sci. 50 (17), 5769–5776. https://doi.org/10.1007/s10853-015-9124-8

Gavras, S., Zhu, S.M., Nie, J.F., Gibson, M.A., Easton M.A. (2016). On the microstructural factors affecting creep resistance of die-cast Mg–La-rare earth (Nd, Y or Gd) alloys. Mat. Sci. Eng. A-Struct. 675, 65–75. https://doi.org/10.1016/j.msea.2016.08.046

Geng, J., Chun, Y.B., Stanford, N., Davies, C.H.J., Nie, J.F., Barnett, M.R. (2011). Processing and properties of Mg–6Gd–1Zn–0.6Zr: Part 2. Mechanical properties and particle twin interactions. Mat. Sci. Eng. A-Struct. 528 (10–11), 3659–3665. https://doi.org/10.1016/j.msea.2011.01.024

Gharghouri, M.A., Weatherly, G.C., Embury, J.D., Root, J. (1999). Study of the mechanical properties of Mg-7.7at.% Al by in-situ neutron diffraction. Philos. Mag. A 79 (7), 1671–1695. https://doi.org/10.1080/01418619908210386

Griffiths, D. (2015). Explaining texture weakening and improved formability in magnesium rare earth alloys. Mater. Sci. Technol. 31 (1), 10–24. https://doi.org/10.1179/1743284714Y.0000000632

Hantzsche, K., Bohlen, J., Wendt, J., Kainer, K.U., Yi, S.B., Letzig, D. (2010). Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets. Scripta Mater. 63 (7), 725–730. https://doi.org/10.1016/j.scriptamat.2009.12.033

He, S.H., Zeng, X.Q., Peng, L.M., Gao, X., Nie, J.F., Ding, W.J. (2007). Microstructure and strengthening mechanism of high strength Mg–10Gd–2Y–0.5Zr alloy. J. Alloys Compd. 427 (1–2), 316–323. https://doi.org/10.1016/j.jallcom.2006.03.015

Herrera-Solaz, V., Hidalgo-Manrique, P., Pérez-Prado, M.T., Letzig, D., Llorca, J., Segurado, J. (2014). Effect of rare earth additions on the critical resolved shear stresses of magnesium alloys. Mater. Lett. 128, 199–203. https://doi.org/10.1016/j.matlet.2014.04.144

Hidalgo-Manrique, P., Robson, J.D., Pérez-Prado, M.T. (2017). Precipitation strengthening and reversed yield stress asymmetry in Mg alloys containing rare-earth elements: A quantitative study. Acta Mater. 124, 456–467. https://doi.org/10.1016/j.actamat.2016.11.019

Humphreys, A.O., Liu, D., Toroghinejad, M.R., Essadiqi, E., Jonas, J.J. (2003). Warm rolling behaviour of low carbon steels. Mater. Sci. Technol. 19 (6), 709–714. https://doi.org/10.1179/026708303225002848

Jiang, L., Jonas, J.J., Mishra, R. (2011). Effect of dynamic strain aging on the appearance of the rare earth texture component in magnesium alloys. Mat. Sci. Eng. A-Struct. 528 (21), 6596–6605. https://doi.org/10.1016/j.msea.2011.05.027

Kada, S.R., Lynch, P.A., Kimpton, J.A., Barnett, M.R. (2016). In-situ X-ray diffraction studies of slip and twinning in the presence of precipitates in AZ91 alloy. Acta Mater. 119, 145–156. https://doi.org/10.1016/j.actamat.2016.08.022

Karaman, I., Sehitoglu, H., Beaudoin, A.J., Chumlyakov, Y.I., Maier, H.J., Tomé, C.N. (2000). Modeling the deformation behaviour of hadfield steel single and polycrystals due to twinning and slip. Acta Mater. 48 (9), 2031–2047. https://doi.org/10.1016/S1359-6454(00)00051-3

Kelley, E.W, Hosford, W.F. (1968). Plane-strain compression of magnesium and magnesium alloy crystals. Trans. Metall. Soc. AIME 242, 5–13.

Keshavarz, Z., Barnett, M.R. (2006). EBSD analysis of deformation modes in Mg–3Al– 1Zn. Scripta Mater. 55 (10), 915–918. https://doi.org/10.1016/j.scriptamat.2006.07.036

Lentz, M., Klaus, M., Wanger, M., Fahreson, C., Beyerlein, I.J., Zecevic, M., Reimers, W., Knezevic, M. (2015). Effect of age hardening on the deformation behavior of a Mg-Y-Nd alloy: In-situ X-ray diffraction and crystal plasticity modeling. Mat. Sci. Eng. A-Struct. 628, 396–409. https://doi.org/10.1016/j.msea.2015.01.069

Li, Z., Zheng, J., Chen, B. (2016). Unravelling the Structure of ?≤ in Mg-Gd-Zn: An Atomic-scale HAADF-STEM Investigation. Mater. Charact. 120, 345–348. https://doi.org/10.1016/j.matchar.2016.08.011

Nie, J.F., Gao, X., Zhu, S.M. (2005). Enhanced age hardening response and creep resistance of Mg–Gd alloys containing Zn. Scripta Mater. 53 (9), 1049–1053. https://doi.org/10.1016/j.scriptamat.2005.07.004

Nie, J.F., Oh-ishi, K., Gao, X., Hono, K. (2008). Solute segregation and precipitation in a creep-resistant Mg–Gd–Zn alloy. Acta Mater. 56 (20), 6061–6076. https://doi.org/10.1016/j.actamat.2008.08.025

Nie, J.F., Zhu, Y.M., Liu, J.Z., Fang, X.Y. (2013). Periodic Segregation of Solute Atoms in Fully Coherent Twin Boundaries. Science 340 (6135), 957–960. https://doi.org/10.1126/science.1229369 PMid:23704567

Reed-Hill, R.E. (1973). Role of deformation twinning in determining the mechanical properties of metals: The Inhomogeneity of Plastic Deformation. ASM International, Materials Park, OH, USA, p. 285. .

Stanford, N., Atwell, D., Beer, A., Davies, C., Barnett, M.R. (2008). Effect of microalloying with rare-earth elements on the texture of extruded magnesium-based alloys. Scripta Mater. 59 (7), 772–775. https://doi.org/10.1016/j.scriptamat.2008.06.008

Stanford, N., Sabirov, I., Sha, G., La Fontaine, A., Ringer, S., Barnett, M. (2010). Effect of Al and Gd Solutes on the Strain Rate Sensitivity of Magnesium Alloys. Metall. Mater. Trans. A 41 (3), 734–743. https://doi.org/10.1007/s11661-009-0107-8

Somekawa, H., Watanabe, H., Althaf Basha, D., Singh, A., Inoue T. (2017). Effect of twin boundary segregation on damping properties in magnesium alloy. Scripta Mater. 129, 35–38. https://doi.org/10.1016/j.scriptamat.2016.10.019

Tomsett, D.I., Bevis, M. (1969). The formation of stacking faults in {10–12} twins in zinc as a result of slip dislocation-deformation twin interactions. Philos. Mag. A 19 (159), 533–537. https://doi.org/10.1080/14786436908216310

Tu, J., Zhang, S. (2016). On the {10–12} twinning growth mechanism in hexagonal close-packed metals. Mater. Design 96, 143–149. https://doi.org/10.1016/j.matdes.2016.02.002

Zhongjun, W., Weiping, J., Jianzhong, C. (2007). Study on the Deformation Behavior of Mg-3.6% Er Magnesium Alloy. J. Rare Earth 25 (6), 744–748. https://doi.org/10.1016/S1002-0721(08)60019-8

Wang, H., Wang, Q.D., Boehlert, C.J., Yin, D.D., Yuan, J. (2015). Tensile and compressive creep behavior of extruded Mg–10Gd–3Y–0.5Zr (wt.%) alloy. Mater Charact. 99, 25–37. https://doi.org/10.1016/j.matchar.2014.11.006

Wang, F., Agnew, S.R. (2016). Dislocation transmutation by tension twinning in magnesium alloy AZ31. Int. J. Plasticity 81, 63–86. https://doi.org/10.1016/j.ijplas.2016.01.012

Wu, D., Chen, R.S., Han, E.H. (2012). Serrated flow and tensile properties of a Mg–Gd–Zn alloy. Mat. Sci. Eng. A-Struct. 532, 267–274. https://doi.org/10.1016/j.msea.2011.10.090

Yuan, J., Wang, Q., Yin, D., Wang, H., Chen, C., Ye, B. (2013). Creep behavior of Mg–9Gd–1Y–0.5Zr (wt.%) alloy piston by squeeze casting. Mater. Charact. 78, 37–46. https://doi.org/10.1016/j.matchar.2013.01.012

Zhu, S.M., Nie, J.F. (2004). Serrated flow and tensile properties of a Mg–Y–Nd alloy. Scripta Mater. 50 (1), 51–55. https://doi.org/10.1016/j.scriptamat.2003.09.039

Zhu, S.M., Gibson, M.A., Easton, M.A., Nie, J.F. (2010). The relationship between microstructure and creep resistance in die-cast magnesium–rare earth alloys. Scripta Mater. 63 (7), 698–703. https://doi.org/10.1016/j.scriptamat.2010.02.005

Zhu, Y.M., Morton, A.J., Nie, J.F. (2012). Growth and transformation mechanisms of 18R and 14H in Mg–Y–Zn alloys. Acta Mater. 60 (19), 6562–6572. https://doi.org/10.1016/j.actamat.2012.08.022

Zhu, Y.M., Bian, M.Z., Nie, J.F. (2017). Tilt boundaries and associated solute segregation in a Mg-Gd alloy. Acta Mater.127, 505–518. https://doi.org/10.1016/j.actamat.2016.12.032

Zhu, Y.M, Xu, S.W., Nie J.F. (2018). {1011} Twin boundary structure in a Mg-Gd alloy. Acta Mater. 143, 1–12. https://doi.org/10.1016/j.actamat.2017.09.067



How to Cite

Garcés, G., Pérez, P., Barea, R., Chávez, B. W., Medina, J., & Adeva, P. (2018). Microstructural evolution and dynamic strain aging (DSA) of Mg-6%Gd-1%Zn alloy during tension and compression testing at intermediate temperatures. Revista De Metalurgia, 54(3), e124. https://doi.org/10.3989/revmetalm.124




Most read articles by the same author(s)