Finite element modelling to predict reinforced concrete corrosion-induced cracking
DOI:
https://doi.org/10.3989/revmetalm.150Keywords:
Concrete cracking, Concrete cover depth, Corrosion penetration depth, Finite element method, Localized corrosion, Modelling, Steel reinforcementsAbstract
A finite element (FE) method was proposed to calculate the corrosion penetration depth (rcrit) on steel reinforcement necessary for the first visible crack to appear on the concrete cover. The FE analysis was carried out using the commercial software from ANSYS. The obtained FE method is a function of free concrete cover depth (C), reinforcement diameter (D), length of the anodic zone (L), and concrete type. The results show a strong influence of localized corrosion (small-size anode versus large-size cathode) on the prediction of the rcrit value. This influence can only be analysed three-dimensionally. The proposed FE method is validated with experimental results from literature. This approach is a novelty in considering the longitudinal direction in the analysis to account for the extension of the anodic cell. Corrosion type strongly depends on the C/L ratio, this leads to uniform corrosion for values between 0.02 < C/L1 < 0.1 and localized corrosion for values between 0.5 < C/L < 4.0.
Downloads
References
ACI 318M?08 (2008). Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hill, Michigan.
Ahmad, A. (2003). Reinforcement corrosion in concrete structures, its monitoring and service life prediction-A review. Cement. Concrete Comp. 25 (4?5), 459?471. https://doi.org/10.1016/S0958-9465(02)00086-0
Andrade, C., Alonso, C., Molina, F.J. (1993). Cover cracking as a function of bar corrosion; Part I-Experimental test. Mater. Struct. 26 (8), 453?464. https://doi.org/10.1007/BF02472805
Balafas, I., Burgoyne, C.J. (2010). Environmental effects on cover cracking due to corrosion. Cement. Concrete Res. 40 (9), 1429?1440. https://doi.org/10.1016/j.cemconres.2010.05.003
Balafas, I., Burgoyne, C.J. (2011). Modelling the structural effects of rust in concrete cover. J. Eng. Mech. 137 (3), 175?185. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000215
Ba?ant, Z.P. (1979). Physical model for steel corrosion in concrete sea structures application. J. Struct. Div.-ASCE 105 (6), 1155-1166.
Bhargava, K., Ghosh, A.K., Mori, Y., Ramanujam, S. (2005). Modelling of time to corrosion-induced cover cracking in reinforced concrete structures. Cement. Concrete Res. 35 (1), 2203?2218. https://doi.org/10.1016/j.cemconres.2005.06.007
Busba, E., Sagües, A.A. (2013). Critical localized corrosion penetration of steel reinforcement for concrete cover cracking. NACE, Corrosion 2013 Conference, Paper No. 2747. http://www.eng.usf.edu/~sagues/Documents/Nace%2013%202747%20Critical%20Local%20Corr%20Penetr%20Crack.pdf.
Castorena, J.H. (2007). Modelación con Elemento Finito del Daño por Corrosión en Estructuras de Hormigón Reforzado, PhD Thesis, Centro de Investigación en Materiales Avanzados (CIMAV), Universidad Autónoma de Nuevo León, Nuevo León, México.
Castorena, J.H., Almeraya-Calderón, F., Velásquez, J.L., Gaona-Tiburcio, C., Cárdenas, A.I.; Barrios-Durstewitz, C., López-León, L., Martínez-Villafañe, A. (2008). Modeling the time-to-corrosion cracking of reinforced concrete structures by finite element. Corrosion 64 (7), 600?606. https://doi.org/10.5006/1.3278495
Chung, L., Najm, H., Balaguru, P. (2008). Flexural behavior of concrete slabs with corroded bars. Cement. Concrete Comp. 30 (3), 184?193. https://doi.org/10.1016/j.cemconcomp.2007.08.005
Elsener, B. (2002). Macrocell corrosion of steel in concrete-implications for corrosion monitoring. Cement. Concrete Comp. 24 (1), 65?72. https://doi.org/10.1016/S0958-9465(01)00027-0
Fajardo, S., Sánchez-Deza, A., Criado, M., La Iglesia, A., Bastidas, J.M. (2014). Corrosion of steel embedded in fly ash mortar using a transmission line model. J. Electrochem. Soc. 161 (8), E3158?E3164. https://doi.org/10.1149/2.019408jes
García, J., Almeraya, F., Barrios, C., Gaona, C., Núñez, R., López, I., Rodríguez, M., Martínez-Villafañe, A., Bastidas, J.M. (2012). Effect of cathodic protection on steel-concrete bond strength using ion migration measurements. Cement. Concrete Comp. 34 (2), 242?247. https://doi.org/10.1016/j.cemconcomp.2011.09.014
González, J.A., Benito, M., Feliu, S., Rodríguez, P., Andrade, C. (1995). Suitability of assessment methods for identifying active and passive zones in reinforced concrete. Corrosion 51 (2), 145?152. https://doi.org/10.5006/1.3293586
González, J.A., Ramírez, E., Bautista, A., Feliu, S. (1996). The behavior of pre-rusted steel in concrete. Cement. Concrete Res. 26 (3), 501?511. https://doi.org/10.1016/S0008-8846(96)85037-X
Hutchinson, J.W., Suo, Z. (1992). Mixed mode cracking in layered materials. In Advances in Applied Mechanics, Vol. 29, Hutchinson, J.W., Wu, T.Y. (Eds.), Academic Press, San Diego, CA, pp. 63-91. https://doi.org/10.1016/S0065-2156(08)70164-9
Jaegermann, C. (1990). Effect of water-cement ratio and curing on chloride penetration into concrete exposed to Mediterranean-sea climate. ACI Mater. J. 87 (4) 333?339. https://doi.org/10.14359/2039
Liu, Y., Weyers, R.E. (1998a). Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures. ACI Mater. J. 95 (6), 675?681. https://doi.org/10.14359/410
Liu, T., Weyers, R.W. (1998b). Modeling the dynamic corrosion process in chloride contaminated concrete structures. Cement. Concrete Res. 28 (3), 365-379. https://doi.org/10.1016/S0008-8846(98)00259-2
Martín-Pérez, B. (1999). Service life modelling of RC highway structures exposed to chlorides. PhD Dissertation, University of Toronto, Toronto.
Mohyeddin, A., Goldsworthy, H.M., Gad, E.F. (2013). FE modelling of RC frames with masonry infill panels under in-plane and out-of-plane loading. Eng. Struct. 51, 73?87. https://doi.org/10.1016/j.engstruct.2013.01.012
Molina, F.J., Alonso, C., Andrade, C. (1993). Cover cracking as a function of rebar corrosion. Part 2-Numerical model. Mater. Struct. 26 (9), 532?548. https://doi.org/10.1007/BF02472864
Oh, B.H., Kim, K.H., Jang, B.S. (2009). Critical corrosion amount to cause cracking of reinforced concrete structures. ACI Mater. J. 106 (4), 333-339. https://doi.org/10.14359/56653
Pantazopoulou, S.J., Papoulia, K.D. (2001). Modelling cover-cracking due to reinforcement corrosion in RC structures. J. Eng. Mech. 127 (4), 342?351. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:4(342)
Popovics, S. (1973). A numerical approach to the complete stress-strain curve of concrete. Cement. Concrete Res. 3 (5), 583?599. https://doi.org/10.1016/0008-8846(73)90096-3
Raupach, M. (1996). Chloride-induced macrocell corrosion of steel in concrete-theoretical background and practical consequences. Constr. Build. Mater. 10 (5), 329?338. https://doi.org/10.1016/0950-0618(95)00018-6
Sánchez-Deza, A., Bastidas, D.M., La Iglesia, A., Bastidas, J.M. (2017). A simple thermodynamic model on the cracking of concrete due to rust formed after casting. Anti-Corros. Method. Mater. 64 (3), 335?339. https://doi.org/10.1108/ACMM-11-2015-1602
Sánchez-Deza, A., Bastidas, D.M., La Iglesia, A., Mora, E.M., Bastidas, J.M. (2018). Service life prediction for 50-year-old buildings in marine environments. Rev. Metal. 54 (1), e111. https://doi.org/10.3989/revmetalm.111
Thorenfeldt, E., Tomaszewicz, A., Jensen, J.J. (1987). Mechanical properties of high-strength concrete and applications in design. Proc. Symposium on Utilization of High-Strength Concrete, Tapir, Trondheim, Norway, pp. 149?159.
Timoshenko, S., Goodier, J. (1970). Theory of Elasticity. McGraw-Hill International Book Company, New York, pp. 41?46.
Torres-Acosta, A., Sagües, A. (2004). Concrete cracking by localized steel corrosion - geometric effects. ACI Mater. J. 101 (6), 501?507. https://doi.org/10.14359/13489
Vu, K., Stewart, M.G., Mullard, J. (2005). Corrosion-induced cracking: experimental data and predictive models. ACI Struct. J. 102 (5), 719-726. https://doi.org/10.14359/14667
Wang, C.T. (1953). Applied Elasticity. McGraw-Hill International Book Company, New York.
Zhang, J., Ling, X., Guan, Z. (2017). Finite element modeling of concrete cover crack propagation due to non-uniform corrosion of reinforcement. Constr. Build. Mater. 132 (2), 487-499. https://doi.org/10.1016/j.conbuildmat.2016.12.019
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.