Crystallization pressure and volume variation during rust development in marine and urban-continental environments: Critical factors influencing exfoliation




Carbon steel, Corrosion, Crystallization pressure, Rust exfoliation, Volume variation, XRD


The rust layer formed on carbon steel exposed to natural marine and urban-continental environments for up to 50 years was studied. Mineralogical phase composition of the rust layer was evaluated by X-ray diffraction (XRD), akaganeite, goethite, lepidocrocite, magnetite, and amorphous phases were identified. Morphological characterization of the specimens was performed using scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) microanalysis. Mechanical stress generated during the formation of the oxide causes exfoliation-induced breakout of the rust layer. Volume variation generated by structural transformations and crystallization pressure (Δp) of the crystalline phases were analyzed to assess the mechanical stress on the rust and a linear relationship was found between the molar volume expansion ratio coefficient (α) and the Δp parameter. The highest Δp was yielded by goethite (374.99 MPa), while akaganeite presented the highest α value (3.29).


Download data is not yet available.


BS EN 10250-2 (2000). Open steel die forgings for general engi­neering purposes. Non-alloy quality and special steels. European Committee for Standardization, Brussels.

BS EN 10277-2 (2008). Bright steel products. Technical delivery conditions. Steels for general engineering purposes. Euro­pean Committee for Standardization, Brussels.

Castorena-González, J.H., Gaona-Tiburcio, C., Bastidas, D.M., Núñez-Jáquez, R.E., Bastidas, J.M., Almeraya-Calderón, F.M. (2019). Finite element modelling to predict reinforced concrete corrosion-induced cracking. Rev. Metal. 55 (3), e150.

Chatterji, S. (2005). Aspects of generation of destructive crys­tal growth pressure. J. Cryst. Growth 277 (1-4), 566−577.

Chen, W.-F. (1975). Limit Analysis and Solid Plasticity, Elsevier, NY, US.

Chung, F.H. (1974). Quantitative interpretation of X-ray dif­fraction patterns of mixtures. I. Matrix-flushing method for quantitative multicomponent analysis. J. Appl. Cryst. 7, 519−5251.

Correns, C.W. (1949). Growth and dissolution of crystals under linear pressure. Discuss. Faraday Soc. 5, 267−271. .

Degen, T., Sadki, M., Bron, E., König, U., Nénert, G. (2014). The highscore suite. Powder Diffr. 29, 13−18.

Espinosa, R.M., Franke, L., Deckelmann, G. (2008). Model for the mechanical stress due to the salt crystallization in porous materials. Constr. Build. Mater. 22 (7), 1350−1367.

Graedel, T.E., Frankenthal, R.P. (1990). Corrosion mechanisms for iron and low alloy steels exposed to the atmosphere. J. Electrochem. Soc. 137 (8), 2385−2394.

Hoerlé, S., Mazaudier, F., Dillmann, P., Santarini, G. (2004). Advances in understanding atmospheric corrosion of iron. II. Mechanistic modelling of wet-dry cycles. Cor­ros. Sci. 46 (6), 1431−1465.

ICDD (2018). International Centre for Diffraction Data (ICDD). PDF-4+2018 (Powder Diffraction File- Database), S. Kabekkodu (Ed.), Newtown Square, PA, USA.

Lair, V., Antony, H., Legrand, L., Chaussé, A. (2006). Electro­chemical reduction of ferric corrosion products and evalu­ation of galvanic coupling with iron. Corros. Sci. 48 (8), 2050−2063.

Mackay, A.L. (1960). β-Ferric oxyhydroxide. Mineral. Mag. 32 (250), 545−557.

Misawa, T., Hashimoto, K., Shimodaira, S. (1974). The mecha­nism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature. Corros. Sci. 14 (2), 131−149.

Morcillo, M., Chico, B., de la Fuente, D., Alcántara, J., Odnevall Wallinder, I., Leygraf, C. (2017). On the mechanism of rust exfoliation in marine environments. J. Electrochem. Soc. 164 (2), C8−C16.

Navrotsky, A., Mazeina, L., Majzlan, J. (2008). Size-driven structural and thermodynamic complexity in iron oxides. Science 319 (5870), 1635−1638. PMid:18356516

Neugebauer, J. (1973). The diagenetic problem of chalk -the role of pressure solution and pore fluid. Neues Jahrb. Geol. Pal­aeontol Abh. 143, 223−245.

Noiriel, C., Renard, F., Doan, M.L., Gratier, J.P. (2010). Intense fracturing and fracture sealing induced by mineral growth in porous rocks. Chem. Geol. 269 (3-4), 197−209.

Rémazeilles, C., Refait, Ph. (2008). Formation, fast oxidation and thermodynamic data of Fe(II) hydroxychlorides. Corros. Sci. 50 (3), 856−864.

Rietveld, H.M. (1969). A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65−71.

Robie, R.A., Hemingway, B.S., Fisher, J.R. (1979). Thermody­namic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascal) pressure and at higher tem­peratures. U.S. Geol. Surv. Bull. 1452, 18−22.

Sánchez-Deza, A., Bastidas, D.M., La Iglesia, A., Bastidas, J.M. (2017). A simple thermodynamic model on the cracking of concrete due to rust formed after casting. Anti-Corros. Method. Mater. 64 (3), 335−339.

Sánchez-Deza, A., Bastidas, D.M., La Iglesia, A., Mora, E.M., Bastidas, J.M. (2018). Service life prediction for 50-year-old buildings in marine environments. Rev. Metal. 54 (1), e111.

Schwarz, H. (1972). Über die wirkung des magnetits beim atmo­sphärischen rosten und beim unterrostten von anstrichen, Werkst Korros 23 (8), 648−663.

Schwertmann, V., Taylor, R.M. (1972). The transformation of lepidocrocite to goethite. Clays Clay Miner. 20, 151−153.

Steiger, M. (2005). Crystal growth in porous materials−I: The crystallization pressure of large crystals. J. Cryst. Growth 282 (3-4), 455−469.

Suda, K., Misra, S., Motohashi, K. (1993). Corro­sion products of reinforcing bars embedded in con­crete. Corros. Sci. 35 (5-8), 1543−1549.

Tanaka, H., Mishima, R., Hatanaka, N., Ishikawa, T., Nakayama, T. (2014). Formation of magnetite rust particles by reacting powder with artificial α-, β- and g-FeOOH in aqueous media. Corros. Sci. 78, 384−387.

Tomlison, G.A. (1927). The rusting of steel surfaces in con­tact. Proc. Roy. Soc. A 115 (771), 472−483.

Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney. K.L., Nuttall, R.L. (1982). The NBS tables of chemical thermodynamic prop­erties. Selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data. 11, 1−392.



How to Cite

Bastidas, D. M., Ress, J., Martin, U., Bosch, J., La Iglesia, A., & Bastidas, J. M. (2020). Crystallization pressure and volume variation during rust development in marine and urban-continental environments: Critical factors influencing exfoliation. Revista De Metalurgia, 56(1), e164.




Most read articles by the same author(s)