Crystallization pressure and volume variation during rust development in marine and urban-continental environments: Critical factors influencing exfoliation

Authors

DOI:

https://doi.org/10.3989/revmetalm.164

Keywords:

Carbon steel, Corrosion, Crystallization pressure, Rust exfoliation, Volume variation, XRD

Abstract


The rust layer formed on carbon steel exposed to natural marine and urban-continental environments for up to 50 years was studied. Mineralogical phase composition of the rust layer was evaluated by X-ray diffraction (XRD), akaganeite, goethite, lepidocrocite, magnetite, and amorphous phases were identified. Morphological characterization of the specimens was performed using scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) microanalysis. Mechanical stress generated during the formation of the oxide causes exfoliation-induced breakout of the rust layer. Volume variation generated by structural transformations and crystallization pressure (Δp) of the crystalline phases were analyzed to assess the mechanical stress on the rust and a linear relationship was found between the molar volume expansion ratio coefficient (α) and the Δp parameter. The highest Δp was yielded by goethite (374.99 MPa), while akaganeite presented the highest α value (3.29).

Downloads

Download data is not yet available.

References

BS EN 10250-2 (2000). Open steel die forgings for general engi­neering purposes. Non-alloy quality and special steels. European Committee for Standardization, Brussels.

BS EN 10277-2 (2008). Bright steel products. Technical delivery conditions. Steels for general engineering purposes. Euro­pean Committee for Standardization, Brussels.

Castorena-González, J.H., Gaona-Tiburcio, C., Bastidas, D.M., Núñez-Jáquez, R.E., Bastidas, J.M., Almeraya-Calderón, F.M. (2019). Finite element modelling to predict reinforced concrete corrosion-induced cracking. Rev. Metal. 55 (3), e150.

Chatterji, S. (2005). Aspects of generation of destructive crys­tal growth pressure. J. Cryst. Growth 277 (1-4), 566−577. https://doi.org/10.1016/j.jcrysgro.2004.12.036

Chen, W.-F. (1975). Limit Analysis and Solid Plasticity, Elsevier, NY, US.

Chung, F.H. (1974). Quantitative interpretation of X-ray dif­fraction patterns of mixtures. I. Matrix-flushing method for quantitative multicomponent analysis. J. Appl. Cryst. 7, 519−5251. https://doi.org/10.1107/S0021889874010375

Correns, C.W. (1949). Growth and dissolution of crystals under linear pressure. Discuss. Faraday Soc. 5, 267−271. . https://doi.org/10.1039/df9490500267

Degen, T., Sadki, M., Bron, E., König, U., Nénert, G. (2014). The highscore suite. Powder Diffr. 29, 13−18. https://doi.org/10.1017/S0885715614000840

Espinosa, R.M., Franke, L., Deckelmann, G. (2008). Model for the mechanical stress due to the salt crystallization in porous materials. Constr. Build. Mater. 22 (7), 1350−1367. https://doi.org/10.1016/j.conbuildmat.2007.04.013

Graedel, T.E., Frankenthal, R.P. (1990). Corrosion mechanisms for iron and low alloy steels exposed to the atmosphere. J. Electrochem. Soc. 137 (8), 2385−2394. https://doi.org/10.1149/1.2086948

Hoerlé, S., Mazaudier, F., Dillmann, P., Santarini, G. (2004). Advances in understanding atmospheric corrosion of iron. II. Mechanistic modelling of wet-dry cycles. Cor­ros. Sci. 46 (6), 1431−1465. https://doi.org/10.1016/j.corsci.2003.09.028

ICDD (2018). International Centre for Diffraction Data (ICDD). PDF-4+2018 (Powder Diffraction File- Database), S. Kabekkodu (Ed.), Newtown Square, PA, USA.

Lair, V., Antony, H., Legrand, L., Chaussé, A. (2006). Electro­chemical reduction of ferric corrosion products and evalu­ation of galvanic coupling with iron. Corros. Sci. 48 (8), 2050−2063. https://doi.org/10.1016/j.corsci.2005.06.013

Mackay, A.L. (1960). β-Ferric oxyhydroxide. Mineral. Mag. 32 (250), 545−557. https://doi.org/10.1180/minmag.1960.032.250.04

Misawa, T., Hashimoto, K., Shimodaira, S. (1974). The mecha­nism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature. Corros. Sci. 14 (2), 131−149. https://doi.org/10.1016/S0010-938X(74)80051-X

Morcillo, M., Chico, B., de la Fuente, D., Alcántara, J., Odnevall Wallinder, I., Leygraf, C. (2017). On the mechanism of rust exfoliation in marine environments. J. Electrochem. Soc. 164 (2), C8−C16. https://doi.org/10.1149/2.0131702jes

Navrotsky, A., Mazeina, L., Majzlan, J. (2008). Size-driven structural and thermodynamic complexity in iron oxides. Science 319 (5870), 1635−1638. https://doi.org/10.1126/science.1148614 PMid:18356516

Neugebauer, J. (1973). The diagenetic problem of chalk -the role of pressure solution and pore fluid. Neues Jahrb. Geol. Pal­aeontol Abh. 143, 223−245.

Noiriel, C., Renard, F., Doan, M.L., Gratier, J.P. (2010). Intense fracturing and fracture sealing induced by mineral growth in porous rocks. Chem. Geol. 269 (3-4), 197−209. https://doi.org/10.1016/j.chemgeo.2009.09.018

Rémazeilles, C., Refait, Ph. (2008). Formation, fast oxidation and thermodynamic data of Fe(II) hydroxychlorides. Corros. Sci. 50 (3), 856−864. https://doi.org/10.1016/j.corsci.2007.08.017

Rietveld, H.M. (1969). A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65−71. https://doi.org/10.1107/S0021889869006558

Robie, R.A., Hemingway, B.S., Fisher, J.R. (1979). Thermody­namic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascal) pressure and at higher tem­peratures. U.S. Geol. Surv. Bull. 1452, 18−22.

Sánchez-Deza, A., Bastidas, D.M., La Iglesia, A., Bastidas, J.M. (2017). A simple thermodynamic model on the cracking of concrete due to rust formed after casting. Anti-Corros. Method. Mater. 64 (3), 335−339. https://doi.org/10.1108/ACMM-11-2015-1602

Sánchez-Deza, A., Bastidas, D.M., La Iglesia, A., Mora, E.M., Bastidas, J.M. (2018). Service life prediction for 50-year-old buildings in marine environments. Rev. Metal. 54 (1), e111. https://doi.org/10.3989/revmetalm.111

Schwarz, H. (1972). Über die wirkung des magnetits beim atmo­sphärischen rosten und beim unterrostten von anstrichen, Werkst Korros 23 (8), 648−663. https://doi.org/10.1002/maco.19720230805

Schwertmann, V., Taylor, R.M. (1972). The transformation of lepidocrocite to goethite. Clays Clay Miner. 20, 151−153. https://doi.org/10.1346/CCMN.1972.0200306

Steiger, M. (2005). Crystal growth in porous materials−I: The crystallization pressure of large crystals. J. Cryst. Growth 282 (3-4), 455−469. https://doi.org/10.1016/j.jcrysgro.2005.05.007

Suda, K., Misra, S., Motohashi, K. (1993). Corro­sion products of reinforcing bars embedded in con­crete. Corros. Sci. 35 (5-8), 1543−1549. https://doi.org/10.1016/0010-938X(93)90382-Q

Tanaka, H., Mishima, R., Hatanaka, N., Ishikawa, T., Nakayama, T. (2014). Formation of magnetite rust particles by reacting powder with artificial α-, β- and g-FeOOH in aqueous media. Corros. Sci. 78, 384−387. https://doi.org/10.1016/j.corsci.2013.08.023

Tomlison, G.A. (1927). The rusting of steel surfaces in con­tact. Proc. Roy. Soc. A 115 (771), 472−483. https://doi.org/10.1098/rspa.1927.0104

Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney. K.L., Nuttall, R.L. (1982). The NBS tables of chemical thermodynamic prop­erties. Selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data. 11, 1−392. https://srd.nist.gov/JPCRD/jpcrdS2Vol11.pdf.

Published

2020-03-30

How to Cite

Bastidas, D. M., Ress, J., Martin, U., Bosch, J., La Iglesia, A., & Bastidas, J. M. (2020). Crystallization pressure and volume variation during rust development in marine and urban-continental environments: Critical factors influencing exfoliation. Revista De Metalurgia, 56(1), e164. https://doi.org/10.3989/revmetalm.164

Issue

Section

Articles

Most read articles by the same author(s)