Macro-Mechanical behavior of unique surface welded joints (AA5083) utilizing tungsten inert gas welding against single-stage homogenization annealing




AA5083 alloys, Homogenization, Mechanical behavior, Surface weld, Tungsten inert gas welding


Surface welded joints are considered an advance and innovative strategy to achieve acceptable strength without consuming much energy on specimen preparation. Two surfaces of AA5083 plates were welded from four sides using the same filler material to prepare specimens. In the surface joint analysis, up to 2-2.2 mm fusion depth was achieved on each side, though the central portion remained characteristically unfused. After joining, homogenization annealing has been performed at 275 °C and 325 °C to hold the specimens for 3 h, which increased the joint performance up to 57.6%. The optical micrographs of fused zones have outlined the alternative-combine visibility of Al6(Mn,Fe) and Mg2Si in analysis with the increase in annealing temperature from 275 °C to 325 °C. Observations from fracture surface characteristics include completely fused zone (CFZ) and base material-fused zone (BMFZ) interface boundary, which in combination defined the whole mechanism of fracture.


Download data is not yet available.


Ahmadi, E., Ranjkesh, M., Mansoori, E., Fattahi, M., Mojallal, R.Y., Amirkhanlou, S. (2017). Microstructure and mechanical roperties of Al/ZrC/TiC hybrid nanocomposite filler metals of tungsten inert gas welding fabricated by accumulative roll bonding. J. Manuf. Process. 26, 173-177.

Baskutis, S., Baskutiene, J., Bendikiene, R., Ciuplys, A. (2019). Effect of weld parameters on mechanical properties and tensile behavior of tungsten inert gas welded AW6082-T6 aluminium alloy. J. Mech. Sci. Technol. 33, 765-772.

Bozzi, S., Helbert-Etter, A.L., Baudin, T., Klosek, V., Kerbiguet, J.G., Criqui, B. (2010). Influence of FSSW parameters on fracture mechanisms of 5182 aluminium welds. J. Mater. Process. Tech. 210 (11), 1429-1435.

Chen, R.-Y., Chu, H.-Y., Lai, C.-C., Wu, C.-T. (2015). Effects of annealing temperature on the mechanical properties and sensitization of 5083-H116 aluminum alloy. Proc. Inst. Mech. Eng. Pt. L J. Mater. 229 (4), 339-346.

D'Antuono, D.S., Gaies, J., Golumbfskie, W., Taheri, M.L. (2017). Direct measurement of the effect of cold rolling on β phase precipitation kinetics in 5xxx series aluminum alloys. Acta Mater. 123, 264-271.

Dolić, N., Brodarac, Z.Z. (2017). Evaluation of EN AW-5083 aluminum alloy homogeneity using statistical analysis of mechanical properties. J. Min. Metall. Sect. B-Metall. 53 (3), 429-439

Engler, O., Liu, Z., Kuhnke, K. (2013). Impact of homogenization on particles in the Al-Mg-Mn alloy AA 5454 - Experiment and simulation. J. Alloys Compd. 560, 111-122.

Engler, O., Miller-Jupp, S. (2016). Control of second-phase particles in the Al-Mg-Mn alloy AA 5083. J. Alloys Compd. 689, 998-1010.

Engler, O., Kuhnke, K., Hasenclever, J. (2017). Development of intermetallic particles during solidification and homogenization of two AA 5xxx series Al-Mg alloys with different Mg contents. J. Alloys Compd. 728, 669-681.

Geng, S., Jiang, P., Shao, X., Mi, G., Wu, H., Ai, Y., Wang, Ch., Han, Ch., Chen, R., Liu, W. (2018). Comparison of solidification cracking susceptibility between Al-Mg and Al-Cu alloys during welding: A phase-field study. Scripta Mater. 150, 120-124.

Huang, Y., Li, Y., Xiao, Z., Liu, Y., Huang, Y., Ren, X. (2016). Effect of homogenization on the corrosion behavior of 5083-H321 aluminum alloy. J. Alloys Compd. 673, 73-79.

Huang, Y., Lv, Z., Wan, L., Shen, J., dos Santos, J.F. (2017). A new method of hybrid friction stir welding assisted by friction surfacing for joining dissimilar Ti/Al alloy. Mater. Lett. 207, 172-175.

Huang, L., Wu, D., Hua, X., Liu, S., Jiang, Z., Li, F., Wang, H., Shi, S. (2018). Effect of the welding direction on the microstructural characterization in fiber laser-GMAW hybrid welding of 5083 aluminum alloy. J. Manuf. Process. 31, 514-522.

Huh, M.Y., Cho, S.Y., Engler, O. (2001). Randomization of the annealing texture in aluminum 5182 sheet by cross-rolling. Mat. Sci. Eng. A 315 (1-2), 35-46.

Kumar, A., Sundarrajan, S. (2009). Optimization of pulsed TIG welding process parameters on mechanical properties of AA 5456 Aluminum alloy weldments. Mater. Design 30 (4), 1288-1297.

Li, J., Carsley, J.E., Stoughton, T.B., Hector Jr, L G., Hu, S.J. (2013). Forming limit analysis for two-stage forming of 5182-O aluminum sheet with intermediate annealing. Int. J. Plasticity 45, 21-43.

Lin, S., Nie, Z., Huang, H., Li, B. (2010). Annealing behavior of a modified 5083 aluminum alloy. Mater. Design 31 (3), 1607-1612.

Muzamil, M., Akhtar, M., Samiuddin, M., Mehdi, M. (2016). Effect of heat treatment on impact resistance of AU5GT and AS7G06 aluminum alloys. J. Mech. Sci. Technol. 30 (10), 4543-4548.

Muzamil, M., Wu, J., Samiuddin, M., Majeed, A., Zhang, Z. (2019a). The response of heat-treatable filler on non-heat-treatable aluminum alloy substrate against age hardening cycle for intelligent development of surface welded joints using TIG welding process. J. Braz. Soc. Mech. Sci. Eng. 41 (5), 229.

Muzamil, M., Wu, J., Akhtar, M., Zhang, Z., Majeed, A., Yang, J. (2019b). Modified TIG welding joint process: An approach to improve microstructure and fracto-mechanical behavior by MWCNTs inducement in Al-Mg-Si alloy. Materials 12 (9), 1441.

Palanivel, R., Mathews, P.K., Dinaharan, I., Murugan, N. (2014). Mechanical and metallurgical properties of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys. T. Nonferr. Metal. Soc. China 24 (1), 58-65.

Qiang, W., Wang, K. (2019). Double-sided coaxial GTA flat-overhead welding of 5083 aluminum alloy. J. Mater. Process. Tech. 272, 9-16.

Radetić, T., Popović, M., Romhanji, E. (2012). Microstructure evolution of a modified AA5083 aluminum alloy during a multistage homogenization treatment. Mater. Charact. 65, 16-27.

Ratchev, P., Verlinden, B., Van Houtte, P. (1995). Effect of preheat temperature on the orientation relationship of (Mn,Fe) Al6 precipitates in an AA 5182 Aluminium-Magnesium alloy. Acta Metall. Mater.43 (2), 621-629.

Samiuddin, M., Li, J.L., Taimoor, M., Siddiqui, M.N., Siddiqui, S.U., Xiong, J.T. (2020). Investigation on the process parameters of TIG-welded aluminum alloy through mechanical and microstructural characterization. Def. Technol. In Press.

Soysal, T., Kou, S. (2019). Effect of filler metals on solidification cracking susceptibility of Al alloys 2024 and 6061. J. Mater. Process. Tech. 266, 421-428.

Tayebi, P., Fazli, A., Asadi, P., Soltanpour, M. (2019). Formability analysis of dissimilar friction stir welded AA 6061 and AA 5083 blanks by SPIF process. CIRP J. Manuf. Sci. Tech. 25, 50-68.

Vargas-Arista, B., Mendoza-Camargo, O., Zaragoza-Rivera, I.P., Medina-Flores, A., Cuevas-Salgado, E., Garfias-García, F., García-Vázquez, F. (2019). Influence of heat input on the Charpy ductile fracture behavior of reheated HAZ in GMAW multilayer welded joints on HSLA steel using digital fractographic analysis. Rev. Metal. 55 (2), e143.

Xia, S.L., Ma, M., Zhang, J.X., Wang, W.X., Liu, W.C. (2014). Effect of heating rate on the microstructure, texture and tensile properties of continuous cast AA 5083 aluminum alloy. Mat. Sci. Eng. A 609, 168-176.

Yi, G., Sun, B., Poplawsky, J. D., Zhu, Y., Free, M.L. (2018). Investigation of pre-existing particles in Al 5083 alloys.J. Alloys Compd. 740, 461-469.

Zhang, J.X., Ma, M., Liu, W.C. (2017). Effect of initial grain size on the recrystallization and recrystallization texture of cold-rolled AA 5182 aluminum alloy. Mat. Sci. Eng. A 690, 233-243.



How to Cite

Muzamil, M., Wu, J., Samiuddin, M., Majeed, A., Uddin Siddiqui, S., & Mudassir, M. (2020). Macro-Mechanical behavior of unique surface welded joints (AA5083) utilizing tungsten inert gas welding against single-stage homogenization annealing. Revista De Metalurgia, 56(3), e173.