Electrochemical assessment of the Mg-Zn-Ca alloy degradation in Hanks’ physiological solution
DOI:
https://doi.org/10.3989/revmetalm.181Keywords:
EIS, Magnesium, Mg-ion release, MgZnCa alloy, PDP, SEM-EDS, XPSAbstract
The effect of Zn (0.95% wt.) and Ca (0.15% wt.) alloying elements on the general degradation mechanism of Mg was investigated in this work. Pure Mg and Mg-Zn-Ca alloy surfaces were characterized during their exposure to Hanks’ physiological solution (at 37 °C) for up to 7 days by SEM-EDS and XPS techniques. The layers formed on the alloy surface contained Ca10(PO4)6(OH)2, which may improve the bone compatibility. The intermetallic particles composed of Mg2Ca-phase, as well as the presence of Zn, promoted the formation of a more uniform protective layer. The EIS and electrochemical noise (EN) tests indicated that the polarization resistance (Rp) of pure Mg is one order of magnitude lower and the current noise resistance (Rn) ≈ 5 times, than those of Mg-Zn-Ca alloy. The pitting index (PI) values of each material were below 0.6, suggesting that the corrosion attack is not highly localized. At the end of the immersion tests, the concentration of Mg-ion released during degradation was ≈ 4.5 times higher for pure Mg (1.63 ± 0.02 mg·cm−2) than that of Mg-Zn-Ca (0.35 ± 0.03 mg·cm−2). Consequently, the calculated corrosion current density (jcorr) for pure Mg was two times higher (1.33 μA·cm−2) than that of ZX10 Mg-alloy (0.59 μA·cm−2).
Downloads
References
ASTM G31-12a (2012). Standard Guide for Laboratory Immersion Corrosion Testing of Metals. ASTM International, West Conshohocken, P.A.
ASTM G199-09 (2014). Standard Guide for Electrochemical Noise Measurement. ASTM International, West Conshohocken, P.A.
ASTM G102-89e1 (2015). Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. ASTM International, West Conshohocken, P.A.
Ben-Hamu, G., Eliezer, D., Shin, K.S. (2008). The role of Mg2Si on the corrosion behavior of wrought Mg-Zn-Mn alloy. Intermetallics 16 (7), 860-867. https://doi.org/10.1016/j.intermet.2008.03.003
Bohlen, J., Wendt, J., Nienaber M., Kainer, K.U., Stutz, L., Letzig, D. (2015). Calcium and zirconium as texture modifiers during rolling and annealing of magnesium-zinc alloys. Mater. Charact. 101, 144-152. https://doi.org/10.1016/j.matchar.2015.02.002
Chang, J.W., Guo, X.W., Fu, P.H., Peng, L.M., Ding, W.J. (2007). Effect of heat treatment on corrosion and electrochemical behaviour of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy. Electrochim. Acta 52 (9), 3160-3167. https://doi.org/10.1016/j.electacta.2006.09.069
Cordoba-Torres, P., Mesquita, T.J., Nogueira, R.P. (2015). Relationship between the Origin of Constant-Phase Element Behavior in Electrochemical Impedance Spectroscopy and Electrode Surface Structure. J. Phys. Chem. C 119 (8), 4136-4148. https://doi.org/10.1021/jp512063f
Dawson, J. (1996). Electrochemical Noise Measurement: The Definitive in-Situ Technique for Corrosion Applications. In Electrochemical Noise Measurement for Corrosion Applications. Edited by Kearns, J., Scully, J., Roberge, P., Reichert, D., Dawson, J., ASTM International, West Conshohocken, P.A., pp. 3-35. https://doi.org/10.1520/STP37949S
Hänzi, A.C., Sologubenko, A.S., Gunde, P., Schinhammer M., Uggowitzer, P.J. (2012). Design considerations for achieving simultaneously high-strength and highly ductile magnesium alloys. Philos. Mag. Lett. 92 (9), 417-427. https://doi.org/10.1080/09500839.2012.657701
Haycock, D.E., Nicholls, C.J., Urch, D.S., Webber, M.J., Wiech, G. (1978). The electronic structure of magnesium dialuminium tetraoxide (spinel) using X-ray emission and X-ray photoelectron spectroscopies. J. Chem. Soc., Dalton Trans. 12, 1785-1790. https://doi.org/10.1039/dt9780001785
Hofstetter, J., Becker, M., Martinelli, E., Weinberg, A.M., Mingler, B., Kilian, H., Pogatscher, S., Uggowitzer, P.J., Löffler J.F. (2014). High-strength low-alloy (HSLA) Mg-Zn-Ca alloys with excellent biodegradation performance. JOM 66, 566-572. https://doi.org/10.1007/s11837-014-0875-5
Huet, F. (2006). Electrochemical noise technique, in Analytical Methods in Corrosion Science and Engineering. Chapter 14, Edited by Marcus, P., Mansfeld, F., Taylor & Francis Group, Boca Raton, F.L., pp. 507-564. https://doi.org/10.1201/9781420028331.ch14
ISO 16428 (2005). Implants for surgery -Test solutions and environmental conditions for static and dynamic corrosion tests on implantable materials and medical devices. Ed. ISO, Geneva, C.H.
Jafari, S., Singh Raman, R.K., Davies, C.H.J., Hofstetter, J., Uggowitzer, P.J., Löffler J.F. (2017). Stress corrosion cracking and corrosion fatigue characterisation of MgZn1Ca0.3 (ZX10) in a simulated physiological environment. J. Mech. Behav. Biomed. Mater. 65, 634-643. https://doi.org/10.1016/j.jmbbm.2016.09.033 PMid:27741493
Kirkland, N.T., Birbilis, N., Walker, J., Woodfield, T., Dias G.J. Staiger, M.P. (2010). In-vitro dissolution of magnesium-calcium binary alloys: Clarifying the unique role of calcium additions in bioresorbable magnesium implant alloys. J. Biomed. Mater. Res. 95B (1), 91-100. https://doi.org/10.1002/jbm.b.31687 PMid:20725953
Kirkland, N.T., Staiger, M.P., Nisbet D., Davies C.H.J., Birbilis, N. (2011). Performance-driven design of biocompatible Mg alloys. JOM 63, 28-34. https://doi.org/10.1007/s11837-011-0089-z
Kuwahara, H., Al-Abdullat, Y., Mazaki, N., Tsutsumi, S., Aizawa, T. (2001). Precipitation of Magnesium Apatite on Pure Magnesium Surface during Immersing in Hank's Solution. Mater. Trans. 42 (7), 1317-1321. https://doi.org/10.2320/matertrans.42.1317
Legat, A., Dolecek, V. (1995). Corrosion monitoring system based on measurement and analysis of electrochemical noise. Corrosion 51 (4), 295-300. https://doi.org/10.5006/1.3293594
Li, Z., Gu, X., Lou, S., Zheng, Y. (2008). The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 29 (10), 1329-1344. https://doi.org/10.1016/j.biomaterials.2007.12.021 PMid:18191191
Li, Y.C., Li, M.H., Hu, W.Y., Hodgson, P., Wen, C.E. (2010). Biodegradable Mg-Ca and Mg-Ca-Y alloys for regenerative medicine. Mater. Sci. Forum 654-656, 2192-2195. https://doi.org/10.4028/www.scientific.net/MSF.654-656.2192
Li, C., Sun, H., Li, X., Zhang, J., Fang, W., Tan, Z. (2015). Microstructure, texture and mechanical properties of Mg-3.0Zn-0.2Ca alloys fabricated by extrusion at various temperatures. J. Alloys Compd. 652, 122-131. https://doi.org/10.1016/j.jallcom.2015.08.215
Makar, G.L., Kruger, J. (1993). Corrosion of magnesium. Int. Mater. Rev. 38 (3), 138-153. https://doi.org/10.1179/imr.1993.38.3.138
Matsubara, H., Ichige, Y., Fujita, K., Nishiyama, H., Hodouchi, K. (2013). Effect of impurity Fe on corrosion behavior of AM50 and AM60 magnesium alloys. Corros. Sci. 66, 203-210. https://doi.org/10.1016/j.corsci.2012.09.021
Mena-Morcillo, E., Veleva, L., Wipf, D.O. (2018). Multi-scale monitoring the first stages of electrochemical behavior of AZ31B magnesium alloy in simulated body fluid. J. Electrochem. Soc. 165 (11), C749-C755. https://doi.org/10.1149/2.0291811jes
Moulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D. (1992). Handbook of X-ray Photoelectron Spectroscopy: A Reference book of Standart Spectra for Identification and interpretation of XPS Data. Edited by Chastain, J., Physical Electronics Division Corporation, Minnesota, USA.
Revell, P.A., Damien, E., Zhang, X., Evans, P., Howlett, C.R. (2004). The effect of magnesium ions on bone bonding to hydroxyapatite coating on titanium alloy implants. Key Eng. Mater. 254-256, 447-450. https://doi.org/10.4028/www.scientific.net/KEM.254-256.447
Roche, V., Koga, G.Y., Matias, T.B., Kiminami, C.S., Bolfarini, C., Botta, W.J., Nogueira, R.P., Jorge Junior, A.M. (2019). Degradation of biodegradable implants: The influence of microstructure and composition of Mg-Zn-Ca alloys. J. Alloys Compd. 774, 168-181. https://doi.org/10.1016/j.jallcom.2018.09.346
Song, G., Atrens, A., John, D.St., Wu, X., Nairn, J. (1997). The anodic dissolution of magnesium in chloride and sulphate solutions. Corros. Sci. 39 (10-11), 1981-2004. https://doi.org/10.1016/S0010-938X(97)00090-5
Song, Y., Han, E.H., Shan, D., Yim, C.D., You, B.S. (2012). The effect of Zn concentration on the corrosion behavior of Mg-xZn alloys. Corros. Sci. 65, 322-330. https://doi.org/10.1016/j.corsci.2012.08.037
Song, R., Liu, D.B., Liu, Y.C., Zheng, W.B., Zhao, Y., Chen, M.F. (2014). Effect of corrosion on mechanical behaviors of Mg-Zn-Zr alloy in simulated body fluid. Front. Mater. Sci. 8 (3), 264-270. https://doi.org/10.1007/s11706-014-0258-4
Stefanidou, M., Maravelias, C., Dona, A., Spiliopoulou, C. (2006). Zinc: a multipurpose trace element. Arch. Toxicol. 80, 1-9. https://doi.org/10.1007/s00204-005-0009-5 PMid:16187101
Tapiero, H., Tew, K.D. (2003). Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed. Pharmacother. 57 (9), 399-411. https://doi.org/10.1016/S0753-3322(03)00081-7
Wang, N., Wang, R., Peng, C., Feng, Y., Zhang, X. (2010). Corrosion behavior of Mg-Al-Pb and Mg-Al-Pb-Zn-Mn alloys in 3.5% NaCl solution. Trans. Nonferr. Metal. Soc. China 20 (10), 1936-1943. https://doi.org/10.1016/S1003-6326(09)60398-8
Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K.U., Willumeit, R., Feyerabend, F. (2008). Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid. State Mater. Sci. 12 (5-6), 63-72. https://doi.org/10.1016/j.cossms.2009.04.001
Wu, G., Fan, Y., Gao, H., Zhai, C., Zhu, Y.P. (2005). The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D. Mater. Sci. Eng. A 408 (1-2), 255-263. https://doi.org/10.1016/j.msea.2005.08.011
Wu, S.C., Chang, P.H., Lin, C.Y., Peng, C.H. (2020). Multi-Metals CaMgAl metal-organic framework as CaO-based sorbent to achieve highly CO2 capture capacity and cyclic performance. Materials 13 (10), 2220-2233. https://doi.org/10.3390/ma13102220 PMid:32408628 PMCid:PMC7287868
Xin, Y.C., Huo, K.F., Hu, T., Tang, G.Y., Chu, P.K. (2009). Corrosion products on biomedical magnesium alloy soaked in simulated body fluids. J. Mater. Res. 24 (8), 2711-2719. https://doi.org/10.1557/jmr.2009.0323
Xin, Y., Hu, T., Chu, P.K. (2011). Degradation behaviour of pure magnesium in simulated body fluids with different concentrations of HCO−3. Corros. Sci. 53 (4), 1522-1528. https://doi.org/10.1016/j.corsci.2011.01.015
Yamasaki, Y., Yoshida, Y., Okazaki, M., Shimazu, A., Uchida, T., Kubo, T., Akagawa, Y., Hamada, Y., Takahashi, J., Matsuura, N. (2002). Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. J. Biomed. Mater. Res. 62 (1), 99-105. https://doi.org/10.1002/jbm.10220 PMid:12124791
Yamasaki, Y., Yoshida, Y., Okazaki, M., Shimazu, A., Kubo, T., Akagawa, Y., Uchida, T. (2003). Action of FGMgCO3Ap-collagen composite in promoting bone formation. Biomaterials 24 (27), 4913-4920. https://doi.org/10.1016/S0142-9612(03)00414-9
Zainal Abidin, N.I., Atrens, A.D., Martin, D., Atrens, A. (2011). Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in Hank's solution at 37 °C. Corros. Sci. 53 (11), 3542-3556. https://doi.org/10.1016/j.corsci.2011.06.030
Zhang, B.P., Geng, L., Huang, L.J., Zhang, X.X., Dong, C.C. (2010). Enhanced mechanical properties in fine-grained Mg-1.0Zn-0.5Ca alloys prepared by extrusion at different temperatures. Scripta Mater. 63 (10), 1024-1027. https://doi.org/10.1016/j.scriptamat.2010.07.038
Zhang, B., Hou, Y., Wang, X., Wang, Y., Geng, L. (2011). Mechanical properties, degradation performance and cytotoxicity of Mg-Zn-Ca biomedical alloys with different compositions. Mater. Sci. Eng. C 31 (8), 1667-1673. https://doi.org/10.1016/j.msec.2011.07.015
Zhang, B., Wang, Y., Geng, L., Lu, C. (2012). Effects of calcium on texture and mechanical properties of hot-extruded Mg-Zn-Ca alloys. Mater. Sci. Eng. A 539, 56-60. https://doi.org/10.1016/j.msea.2012.01.030
Zhao, M.C., Liu, M., Song, G.L., Atrens, A. (2008). Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41. Corros. Sci. 50 (11), 3168-3178. https://doi.org/10.1016/j.corsci.2008.08.023
Zreiqat, H., Howlett, C.R., Zannettino, A., Evans, P., Schulze-Tanzil, G., Knabe, C., Shakibaei, M. (2002). Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J. Biomed. Mater. Res. Part A 62 (2), 175-184. https://doi.org/10.1002/jbm.10270 PMid:12209937
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.