Evaluación electroquímica de la degradación de la aleación de Mg-Zn-Ca en la solución fisiológica de Hanks
DOI:
https://doi.org/10.3989/revmetalm.181Palabras clave:
Aleación MgZnCa, EIS, Liberación de iones de Mg, Magnesio, PDP, SEM-EDS, XPSResumen
En el presente trabajo se ha investigado el efecto de los elementos aleantes Zn (0,95% en masa) y Ca (0,15% en masa) en el mecanismo de degradación del Mg. Las superficies del Mg puro y de la aleación Mg-Zn-Ca han sido caracterizadas durante su exposición a la solución fisiológica de Hanks (a 37 °C) hasta siete días, utilizando las técnicas SEM-EDS y XPS. La capa formada en la superficie de la aleación contiene Ca10(PO4)6(OH)2, que puede mejorar la compatibilidad ósea. Las partículas intermetálicas compuestas de la fase Mg2Ca, así como la presencia de Zn, han promovido la formación de una capa protectora más uniforme. Las pruebas de EIS y ruido electroquímico (EN) han indicado que la resistencia a la polarización (Rp) del Mg puro es un orden de magnitud menor y la resistencia al ruido de la corriente (Rn) ≈ 5 veces menor, que los de la aleación de Mg-Zn-Ca. Los valores del índice de picadura (PI) de cada material fueron inferiores a 0,6; lo que sugiere que el ataque de corrosión no está altamente localizado. Al final de las pruebas de inmersión, la concentración de iones de Mg liberados durante la degradación ha sido ≈ 4,5 veces mayor para Mg puro (1,63 ± 0,02 mg·cm−2) que para Mg-Zn-Ca (0,35 ± 0,03 mg·cm−2). En consecuencia, la densidad de corriente de corrosión (jcorr) calculada para el Mg puro fue dos veces mayor (1,33 μA·cm−2) que la de la aleación de Mg ZX10 (0,59 μA·cm−2).
Descargas
Citas
ASTM G31-12a (2012). Standard Guide for Laboratory Immersion Corrosion Testing of Metals. ASTM International, West Conshohocken, P.A.
ASTM G199-09 (2014). Standard Guide for Electrochemical Noise Measurement. ASTM International, West Conshohocken, P.A.
ASTM G102-89e1 (2015). Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. ASTM International, West Conshohocken, P.A.
Ben-Hamu, G., Eliezer, D., Shin, K.S. (2008). The role of Mg2Si on the corrosion behavior of wrought Mg-Zn-Mn alloy. Intermetallics 16 (7), 860-867. https://doi.org/10.1016/j.intermet.2008.03.003
Bohlen, J., Wendt, J., Nienaber M., Kainer, K.U., Stutz, L., Letzig, D. (2015). Calcium and zirconium as texture modifiers during rolling and annealing of magnesium-zinc alloys. Mater. Charact. 101, 144-152. https://doi.org/10.1016/j.matchar.2015.02.002
Chang, J.W., Guo, X.W., Fu, P.H., Peng, L.M., Ding, W.J. (2007). Effect of heat treatment on corrosion and electrochemical behaviour of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy. Electrochim. Acta 52 (9), 3160-3167. https://doi.org/10.1016/j.electacta.2006.09.069
Cordoba-Torres, P., Mesquita, T.J., Nogueira, R.P. (2015). Relationship between the Origin of Constant-Phase Element Behavior in Electrochemical Impedance Spectroscopy and Electrode Surface Structure. J. Phys. Chem. C 119 (8), 4136-4148. https://doi.org/10.1021/jp512063f
Dawson, J. (1996). Electrochemical Noise Measurement: The Definitive in-Situ Technique for Corrosion Applications. In Electrochemical Noise Measurement for Corrosion Applications. Edited by Kearns, J., Scully, J., Roberge, P., Reichert, D., Dawson, J., ASTM International, West Conshohocken, P.A., pp. 3-35. https://doi.org/10.1520/STP37949S
Hänzi, A.C., Sologubenko, A.S., Gunde, P., Schinhammer M., Uggowitzer, P.J. (2012). Design considerations for achieving simultaneously high-strength and highly ductile magnesium alloys. Philos. Mag. Lett. 92 (9), 417-427. https://doi.org/10.1080/09500839.2012.657701
Haycock, D.E., Nicholls, C.J., Urch, D.S., Webber, M.J., Wiech, G. (1978). The electronic structure of magnesium dialuminium tetraoxide (spinel) using X-ray emission and X-ray photoelectron spectroscopies. J. Chem. Soc., Dalton Trans. 12, 1785-1790. https://doi.org/10.1039/dt9780001785
Hofstetter, J., Becker, M., Martinelli, E., Weinberg, A.M., Mingler, B., Kilian, H., Pogatscher, S., Uggowitzer, P.J., Löffler J.F. (2014). High-strength low-alloy (HSLA) Mg-Zn-Ca alloys with excellent biodegradation performance. JOM 66, 566-572. https://doi.org/10.1007/s11837-014-0875-5
Huet, F. (2006). Electrochemical noise technique, in Analytical Methods in Corrosion Science and Engineering. Chapter 14, Edited by Marcus, P., Mansfeld, F., Taylor & Francis Group, Boca Raton, F.L., pp. 507-564. https://doi.org/10.1201/9781420028331.ch14
ISO 16428 (2005). Implants for surgery -Test solutions and environmental conditions for static and dynamic corrosion tests on implantable materials and medical devices. Ed. ISO, Geneva, C.H.
Jafari, S., Singh Raman, R.K., Davies, C.H.J., Hofstetter, J., Uggowitzer, P.J., Löffler J.F. (2017). Stress corrosion cracking and corrosion fatigue characterisation of MgZn1Ca0.3 (ZX10) in a simulated physiological environment. J. Mech. Behav. Biomed. Mater. 65, 634-643. https://doi.org/10.1016/j.jmbbm.2016.09.033 PMid:27741493
Kirkland, N.T., Birbilis, N., Walker, J., Woodfield, T., Dias G.J. Staiger, M.P. (2010). In-vitro dissolution of magnesium-calcium binary alloys: Clarifying the unique role of calcium additions in bioresorbable magnesium implant alloys. J. Biomed. Mater. Res. 95B (1), 91-100. https://doi.org/10.1002/jbm.b.31687 PMid:20725953
Kirkland, N.T., Staiger, M.P., Nisbet D., Davies C.H.J., Birbilis, N. (2011). Performance-driven design of biocompatible Mg alloys. JOM 63, 28-34. https://doi.org/10.1007/s11837-011-0089-z
Kuwahara, H., Al-Abdullat, Y., Mazaki, N., Tsutsumi, S., Aizawa, T. (2001). Precipitation of Magnesium Apatite on Pure Magnesium Surface during Immersing in Hank's Solution. Mater. Trans. 42 (7), 1317-1321. https://doi.org/10.2320/matertrans.42.1317
Legat, A., Dolecek, V. (1995). Corrosion monitoring system based on measurement and analysis of electrochemical noise. Corrosion 51 (4), 295-300. https://doi.org/10.5006/1.3293594
Li, Z., Gu, X., Lou, S., Zheng, Y. (2008). The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 29 (10), 1329-1344. https://doi.org/10.1016/j.biomaterials.2007.12.021 PMid:18191191
Li, Y.C., Li, M.H., Hu, W.Y., Hodgson, P., Wen, C.E. (2010). Biodegradable Mg-Ca and Mg-Ca-Y alloys for regenerative medicine. Mater. Sci. Forum 654-656, 2192-2195. https://doi.org/10.4028/www.scientific.net/MSF.654-656.2192
Li, C., Sun, H., Li, X., Zhang, J., Fang, W., Tan, Z. (2015). Microstructure, texture and mechanical properties of Mg-3.0Zn-0.2Ca alloys fabricated by extrusion at various temperatures. J. Alloys Compd. 652, 122-131. https://doi.org/10.1016/j.jallcom.2015.08.215
Makar, G.L., Kruger, J. (1993). Corrosion of magnesium. Int. Mater. Rev. 38 (3), 138-153. https://doi.org/10.1179/imr.1993.38.3.138
Matsubara, H., Ichige, Y., Fujita, K., Nishiyama, H., Hodouchi, K. (2013). Effect of impurity Fe on corrosion behavior of AM50 and AM60 magnesium alloys. Corros. Sci. 66, 203-210. https://doi.org/10.1016/j.corsci.2012.09.021
Mena-Morcillo, E., Veleva, L., Wipf, D.O. (2018). Multi-scale monitoring the first stages of electrochemical behavior of AZ31B magnesium alloy in simulated body fluid. J. Electrochem. Soc. 165 (11), C749-C755. https://doi.org/10.1149/2.0291811jes
Moulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D. (1992). Handbook of X-ray Photoelectron Spectroscopy: A Reference book of Standart Spectra for Identification and interpretation of XPS Data. Edited by Chastain, J., Physical Electronics Division Corporation, Minnesota, USA.
Revell, P.A., Damien, E., Zhang, X., Evans, P., Howlett, C.R. (2004). The effect of magnesium ions on bone bonding to hydroxyapatite coating on titanium alloy implants. Key Eng. Mater. 254-256, 447-450. https://doi.org/10.4028/www.scientific.net/KEM.254-256.447
Roche, V., Koga, G.Y., Matias, T.B., Kiminami, C.S., Bolfarini, C., Botta, W.J., Nogueira, R.P., Jorge Junior, A.M. (2019). Degradation of biodegradable implants: The influence of microstructure and composition of Mg-Zn-Ca alloys. J. Alloys Compd. 774, 168-181. https://doi.org/10.1016/j.jallcom.2018.09.346
Song, G., Atrens, A., John, D.St., Wu, X., Nairn, J. (1997). The anodic dissolution of magnesium in chloride and sulphate solutions. Corros. Sci. 39 (10-11), 1981-2004. https://doi.org/10.1016/S0010-938X(97)00090-5
Song, Y., Han, E.H., Shan, D., Yim, C.D., You, B.S. (2012). The effect of Zn concentration on the corrosion behavior of Mg-xZn alloys. Corros. Sci. 65, 322-330. https://doi.org/10.1016/j.corsci.2012.08.037
Song, R., Liu, D.B., Liu, Y.C., Zheng, W.B., Zhao, Y., Chen, M.F. (2014). Effect of corrosion on mechanical behaviors of Mg-Zn-Zr alloy in simulated body fluid. Front. Mater. Sci. 8 (3), 264-270. https://doi.org/10.1007/s11706-014-0258-4
Stefanidou, M., Maravelias, C., Dona, A., Spiliopoulou, C. (2006). Zinc: a multipurpose trace element. Arch. Toxicol. 80, 1-9. https://doi.org/10.1007/s00204-005-0009-5 PMid:16187101
Tapiero, H., Tew, K.D. (2003). Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed. Pharmacother. 57 (9), 399-411. https://doi.org/10.1016/S0753-3322(03)00081-7
Wang, N., Wang, R., Peng, C., Feng, Y., Zhang, X. (2010). Corrosion behavior of Mg-Al-Pb and Mg-Al-Pb-Zn-Mn alloys in 3.5% NaCl solution. Trans. Nonferr. Metal. Soc. China 20 (10), 1936-1943. https://doi.org/10.1016/S1003-6326(09)60398-8
Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K.U., Willumeit, R., Feyerabend, F. (2008). Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid. State Mater. Sci. 12 (5-6), 63-72. https://doi.org/10.1016/j.cossms.2009.04.001
Wu, G., Fan, Y., Gao, H., Zhai, C., Zhu, Y.P. (2005). The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D. Mater. Sci. Eng. A 408 (1-2), 255-263. https://doi.org/10.1016/j.msea.2005.08.011
Wu, S.C., Chang, P.H., Lin, C.Y., Peng, C.H. (2020). Multi-Metals CaMgAl metal-organic framework as CaO-based sorbent to achieve highly CO2 capture capacity and cyclic performance. Materials 13 (10), 2220-2233. https://doi.org/10.3390/ma13102220 PMid:32408628 PMCid:PMC7287868
Xin, Y.C., Huo, K.F., Hu, T., Tang, G.Y., Chu, P.K. (2009). Corrosion products on biomedical magnesium alloy soaked in simulated body fluids. J. Mater. Res. 24 (8), 2711-2719. https://doi.org/10.1557/jmr.2009.0323
Xin, Y., Hu, T., Chu, P.K. (2011). Degradation behaviour of pure magnesium in simulated body fluids with different concentrations of HCO−3. Corros. Sci. 53 (4), 1522-1528. https://doi.org/10.1016/j.corsci.2011.01.015
Yamasaki, Y., Yoshida, Y., Okazaki, M., Shimazu, A., Uchida, T., Kubo, T., Akagawa, Y., Hamada, Y., Takahashi, J., Matsuura, N. (2002). Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. J. Biomed. Mater. Res. 62 (1), 99-105. https://doi.org/10.1002/jbm.10220 PMid:12124791
Yamasaki, Y., Yoshida, Y., Okazaki, M., Shimazu, A., Kubo, T., Akagawa, Y., Uchida, T. (2003). Action of FGMgCO3Ap-collagen composite in promoting bone formation. Biomaterials 24 (27), 4913-4920. https://doi.org/10.1016/S0142-9612(03)00414-9
Zainal Abidin, N.I., Atrens, A.D., Martin, D., Atrens, A. (2011). Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in Hank's solution at 37 °C. Corros. Sci. 53 (11), 3542-3556. https://doi.org/10.1016/j.corsci.2011.06.030
Zhang, B.P., Geng, L., Huang, L.J., Zhang, X.X., Dong, C.C. (2010). Enhanced mechanical properties in fine-grained Mg-1.0Zn-0.5Ca alloys prepared by extrusion at different temperatures. Scripta Mater. 63 (10), 1024-1027. https://doi.org/10.1016/j.scriptamat.2010.07.038
Zhang, B., Hou, Y., Wang, X., Wang, Y., Geng, L. (2011). Mechanical properties, degradation performance and cytotoxicity of Mg-Zn-Ca biomedical alloys with different compositions. Mater. Sci. Eng. C 31 (8), 1667-1673. https://doi.org/10.1016/j.msec.2011.07.015
Zhang, B., Wang, Y., Geng, L., Lu, C. (2012). Effects of calcium on texture and mechanical properties of hot-extruded Mg-Zn-Ca alloys. Mater. Sci. Eng. A 539, 56-60. https://doi.org/10.1016/j.msea.2012.01.030
Zhao, M.C., Liu, M., Song, G.L., Atrens, A. (2008). Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41. Corros. Sci. 50 (11), 3168-3178. https://doi.org/10.1016/j.corsci.2008.08.023
Zreiqat, H., Howlett, C.R., Zannettino, A., Evans, P., Schulze-Tanzil, G., Knabe, C., Shakibaei, M. (2002). Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J. Biomed. Mater. Res. Part A 62 (2), 175-184. https://doi.org/10.1002/jbm.10270 PMid:12209937
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.