Optimization by response surface method of dissolution of metallic zinc obtained from waste Zinc-Carbon batteries in nitric acid solutions

Authors

DOI:

https://doi.org/10.3989/revmetalm.191

Keywords:

Dissolution, Nitric acid, Response surface method, Waste battery, Metallic zinc

Abstract


En este estudio, se investigaron los efectos interactivos de las variables del proceso: concentración de ácido nítrico, la cantidad de zinc disuelta en la batería y el tiempo de reacción sobre la eficiencia de la disolución de zinc metálico en soluciones de ácido nítrico aplicando la metodología de superficie de respuesta (RSM). Se encontró que la eficiencia de disolución aumentaba al aumentar la concentración de ácido nítrico y el tiempo de reacción y disminuía al hacerlo la cantidad de zinc. Se aplicó el análisis de regresión múltiple a los datos experimentales para observar los efectos interactivos de los parámetros experimentales. Se obtuvo la ecuación polinomial de segundo orden. Las condiciones experimentales óptimas se determinaron mediante el uso del módulo de optimización en el software Design-Expert, y se encontraron diferentes puntos de solución.

 

Downloads

Download data is not yet available.

References

Abazarpoor, A., Halali, M., Maarefvand, M., Khatibnczhad, H. (2013). Application of response surface methodology and central composite rotatable design for modeling and optimization of sulfuric leaching of rutile containing slag and ilmenite. Russ. J. Non-Ferr. Met. 54, 388-397. https://doi.org/10.3103/S1067821213050027

Ahn, J.W., Chung, D.W., Lee, K.W., Ahn, J.G., Sohn, H.Y. (2011). Nitric acid leaching of base metals from waste PDP electrode scrap and recovery of ruthenium content from leached residues. Mater Trans. 52 (5), 1063-1069. https://doi.org/10.2320/matertrans.M2010417

Baba, A.A., Adekola, A.F., Bale, R.B. (2009). Development of a combined pyro- and hydro-metallurgical route to treat spent zinc-carbon batteries. J. Hazard. Mater. 171 (1-3), 838-844. https://doi.org/10.1016/j.jhazmat.2009.06.068

Biswas, R.K., Karmakar, A.K., Kumar, S.L. (2016). Recovery of manganese and zinc from spent Zn-C cell powder: Experimental design of leaching by sulfuric acid solution containing glucose. Waste Manage. 51, 174-181. https://doi.org/10.1016/j.wasman.2015.11.002

Chollom, M.N., Rathilal, S., Swalaha, F.M., Bakare, B.F., Tetteh, E.K. (2020). Comparison of response surface methods for the optimization of an upflow anaerobic sludge blanket for the treatment of slaughterhouse wastewater. Environ. Eng. Res. 25 (1), 114-122. https://doi.org/10.4491/eer.2018.366

Demirkıran, N., Turhan Özdemir, G.D. (2019). A kinetic model for dissolution of zinc oxide powder obtained from waste alkaline batteries in sodium hydroxide solutions. Metall. Mater. Trans. B. 50, 491-501. https://doi.org/10.1007/s11663-018-1469-3

Ghosh, S., Chakraborty, R., Chatterjee, G., Raychaudhuri, U. (2012). Study on fermentation conditions of palm juice vinegar by response surface methodology and development of a kinetic model. Braz. J. Chem. Eng. 29 (3), 461-472. https://doi.org/10.1590/S0104-66322012000300003

Ijadi Bajestani, M., Mousavi, S.M., Shojaosadati, S.A. (2014). Bioleaching of heavy metals from spent household batteries using Acidithiobacillus Ferrooxidans:Statistical evaluation and optimization. Sep. Purif. Technol. 132, 309-316. https://doi.org/10.1016/j.seppur.2014.05.023

Khalil, S.A., EI-Manguch, M.A. (1987). The kinetics of zinc dissolution in nitric acid. Monatsh. Chem. 118, 453-462. https://doi.org/10.1007/BF00809928

Kurushkin, M. (2015). Writing reactions of metals with nitric acid: A mnemonic device for introductory chemistry students. J. Chem. Educ. 92, 1125-1126. https://doi.org/10.1021/ed5006773

Mihit, M., Belkhaouda, M., Bazzi, L., Salghi, R., El Issami, S., Ait Addi, E. (2007). Behaviour of brasses corrosion in nitric acid with and without PMT. Port. Electrochim. Acta. 25 (4), 471-480. https://doi.org/10.4152/pea.200704471

Niaki, A.R., Abazarpoor, A., Halali, M., Maarefvand, M., Ebrahimi, G. (2015). Application of response surface methodology and central composite rotatable design for modeling and optimization of sulfuric and nitric leaching of spent catalyst. Russ. J. Non-Ferr. Met. 56, 155-164. https://doi.org/10.3103/S1067821215020145

Niu, Z., Huang, Q., Xin, B., Qi, C., Hu, J.F., Chen, S., Li, Y. (2016). Optimization of bioleaching conditions for metal removal from spent zinc-manganese batteries using response surface methodology. J. Chem. Technol. Biotechnol. 91 (3), 608-617. https://doi.org/10.1002/jctb.4611

Nogueira, C.A., Margarido, F. (2015). Selective process of zinc extraction from spent Zn-MnO2 batteries by ammonium chloride leaching. Hydrometallurgy 157, 13-21. https://doi.org/10.1016/j.hydromet.2015.07.004

Ohale, P.E., Uzoh, C.F., Onukwuli, O.D. (2017). Optimal factor evaluation for the dissolution of alumina from Azaraegbelu clay in acid solutions using RSM and ANN comparative analysis. S. Afr. J. Chem. Eng. 24, 43-54. https://doi.org/10.1016/j.sajce.2017.06.003

Rabah, M.A., El-Sayed, A.S. (1995). Recovery of zinc and some of its valuable salts from secondary resources and wastes. Hydrometallurgy 37 (1), 23-32. https://doi.org/10.1016/0304-386X(94)00015-U

Sahu, K.K., Agrawal, A., Pandey, B.D. (2004). Recent trends and current practices for secondary processing of zinc and lead. Part II: zinc recovery from secondary sources. Waste Manage. Res. 22 (4), 248-254. https://doi.org/10.1177/0734242X04044991

Senanayake, G., Shin, S.M., Senaputra, A., Winn, A., Pugaev, D., Avraamides, J., Shon, J.S., Kim, D.J. (2010). Comparative leaching of spent zinc-manganese-carbon batteries using sulfur dioxide in ammoniacal and sulfuric acid solutions. Hydrometallurgy 105 (1-2), 36-41. https://doi.org/10.1016/j.hydromet.2010.07.004

Shalchian, H., Rafsanjani-Abbasi, A., Vahdati-Khaki, J., Babakhani, A. (2015). Selective acidic leaching of spent zinc-carbon batteries followed by zinc electrowinning. Metall. Mater. Trans. B. 46, 38-47. https://doi.org/10.1007/s11663-014-0216-7

Shin, S.M., Kang, J.G., Yang, D.H., Sohn, J.S. (2007). Development of metal recovery process from alkaline manganese batteries in sulfuric acid solutions. Mater. Trans. 48 (2), 244-248. https://doi.org/10.2320/matertrans.48.244

Shin, S.M., Kang, J.G., Yang, D.H., Sohn, J.S., Kim, T.H. (2008). Selective leaching of zinc from spent zinc-carbon battery with ammoniacal ammonium carbonate. Mater. Trans. 49 (9), 2124-2128. https://doi.org/10.2320/matertrans.MRA2008164

Shin, S.M., Senanayake, G., Sohn, J., Kang, J., Yang, D., Kim, T. (2009). Separation of zinc from spent zinc-carbon batteries by selective leaching with sodium hydroxide. Hydrometallurgy 96 (4), 349-353. https://doi.org/10.1016/j.hydromet.2008.12.010

Sudamalla, P., Saravanan, P., Matheswaran, M. (2012). Optimisation of operating parameters using response surface methodology for adsorption of crystal violet by activated carbon prepared from mango kernel. Sustain. Environ. Res. 22, 1-7.

Tanong, K., Coudert, L., Chartier, M., Mercier, G., Blais, J.F. (2017). Study of the factors influencing the metals solubilisation from a mixture of waste batteries by response surface methodology. Environ. Technol. 38 (24), 3167-3179. https://doi.org/10.1080/09593330.2017.1291756

Tsakiridis, P.E., Oustadakis, P., Katsiapi, A., Agatzini-Leonardou, S. (2010). Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part II: Downstream processing and zinc recovery by electrowinning. J. Hazard. Mater. 179 (1-3), 8-14. https://doi.org/10.1016/j.jhazmat.2010.04.004

Turhan Özdemir, G.D., Demirkıran, N. (2019a). Recovery of zinc and manganese from waste alkaline battery powder by two-stage leaching process (in Turkish). Mining 58, 275-286.

Turhan Özdemir, G.D., Demirkıran, N. (2019b). Determination of optimal conditions for dissolution of manganese in the leach residue of waste battery powder by response surface method (in Turkish). Çukurova University Journal of the Faculty of Engineering and Architecture 34 (2), 73-85.

Yolmeh, M., Jafari, S.M. (2017). Applications of response surface methodology in the food industry processes. Food Bioprocess. Technol. 10, 413-433. https://doi.org/10.1007/s11947-016-1855-2

Published

2021-06-28

How to Cite

Demirkıran, N. ., Şenel, M. ., & Deniz Turhan Özdemir, G. . (2021). Optimization by response surface method of dissolution of metallic zinc obtained from waste Zinc-Carbon batteries in nitric acid solutions. Revista De Metalurgia, 57(2), e191. https://doi.org/10.3989/revmetalm.191

Issue

Section

Articles

Funding data

Inönü Üniversitesi
Grant numbers FYL-2017-915

Most read articles by the same author(s)