Comparative study of the behaviour of several reinforcement materials in titanium matrix produced by Rapid Sinter Pressing Manufacturing
DOI:
https://doi.org/10.3989/revmetalm.229Keywords:
Microstructure, Rapid sinter pressing, Titanium composites, Tribological behaviour, XRD analysisAbstract
Regarding titanium matrix composites (TMCs), their properties strongly depend on the reinforcement material employed for their manufacturing; this may lead to a multitude of investigations on TMCs. Considering the diverse typology of the reinforcement, six types of ceramic particles were tested in this investigation: B4C, SiB6, TiB2, TiC, TiN, and BN. In order to compare their behaviour and their own influence on the properties of the TMCs, the same ratio was employed in the starting materials, 30% volume. Among the techniques for developing TMCs, a significant number of authors propose Powder Metallurgy as a favourable route. In this framework, the novel Rapid Sinter Pressing technique was employed to perform the present study, due to its flexibility, repeatability, and reproducibility, as well as short-run cycle times. The processing temperature (930 °C) was set with the intention of evaluating how the reinforcements behave differently depending on their reactivity with the Ti matrix. In this regard, the main objective of the research was to carry out a comparison on the behaviour of seven TMCs fabricated with similar operational parameters via RSP.
Downloads
References
Ammisetti, D.K., Kruthiventi, S.S.H. (2020). Recent trends on titanium metal matrix composites: A review. Mater. Today: Proc. 46 (10), 9730-9735. https://doi.org/10.1016/j.matpr.2020.08.732
Arévalo, C., Kitzmantel, M., Neubauer, E., Montealegre-Meléndez, I. (2016a). Development of Ti-MMCs by the use of different reinforcements via conventional Hot-Pressing. Key Eng. Mater. 704, 400-405. https://doi.org/10.4028/www.scientific.net/KEM.704.400
Arévalo, C., Montealegre-Meléndez, I., Ariza, E., Kitzmantel, M., Rubio-Escudero, C., Neubauer, E. (2016b). Influence of Sintering Temperature on the Microstructure and Mechanical Properties of In Situ Reinforced Titanium Composites by Inductive Hot Pressing. Materials 9 (11), 919. https://doi.org/10.3390/ma9110919
PMid:28774039 PMCid:PMC5457192
Arévalo, C., Montealegre-Meléndez, I., Pérez-Soriano, E.M., Ariza, E., Kitzmantel, M., Neubauer, E. (2017). Study of the Influence of TiB Content and Temperature in the Properties of In Situ Titanium Matrix Composites. Metals 7 (11), 457. https://doi.org/10.3390/met7110457
Arévalo, C., Beltrán, A.M., Montealegre-Meléndez, I., Pérez-Soriano, E.M., Kitzmantel, M., Neubauer, E. (2019). Electron microscopy characterization of the reaction layer in titanium composites reinforced with B4C particles and the effect of the presence of aluminium. Mater. Res. Express 6, 116518. https://doi.org/10.1088/2053-1591/ab450e
ASTM C373-14 (2014). Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products, Ceramic Tiles, and Glass Tiles. ASTM International, West Conshohocken, USA.
ASTM B962-13 (2014). Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes' Principle. ASTM International, West Conshohocken, USA.
Cheng, Q., Zhang, P., Ma, X., Wan, S., Jialin chen, Hu, W., Wang, W., Yi, G., Zhao, J. (2022). Microstructure evolution and wear mechanism of in situ prepared Ti-TiN cermet layers at high temperature. Compos. B Eng. 242, 110028. https://doi.org/10.1016/j.compositesb.2022.110028
Choi, B.J., Kim, I.Y., Lee, Y.Z., Kim, Y.J. (2014). Microstructure and friction/wear behavior of (TiB+TiC) particulate-reinforced titanium matrix composites. Wear 318 (1-2), 68-77. https://doi.org/10.1016/j.wear.2014.05.013
Davis, J.R. (1989). ASM Handbook: Nondestructive Evaluation and Quality Control.Vol. 17. ASM-International.
Fang, M., Han, Y., Shi, Z., Huang, G., Song, J., Lu, W. (2021). Embedding boron into Ti powder for direct laser deposited titanium matrix composite: Microstructure evolution and the role of nano-TiB network structure. Compos. B Eng. 211, 108683. https://doi.org/10.1016/j.compositesb.2021.108683
Farías, I., Olmos, L., Jiménez, O., Flores, M., Braem, A., Vleugels, J. (2019). Wear modes in open porosity titanium matrix composites with TiC addition processed by spark plasma sintering. Trans. Nonferrous Met. Soc. China 29 (8), 1653-1664. https://doi.org/10.1016/S1003-6326(19)65072-7
Hayat, M.D., Singh, H., He, Z., Cao, P. (2019). Titanium metal matrix composites: An overview. Compos. Part A Appl. Sci. Manuf. 121, 418-438. https://doi.org/10.1016/j.compositesa.2019.04.005
Huang, G., Guo, X., Han, Y., Wang, L., Lu, W., Zhang, D. (2016). Effect of extrusion dies angle on the microstructure and properties of (TiB+TiC)/Ti6Al4V in situ titanium matrix composite. Mater. Sci. Eng. A 667, 317-325. https://doi.org/10.1016/j.msea.2016.05.021
Jiang, Y., Wang, C., Liang, S., Ren, J., Du, X., Liu, F. (2016). TiB2(-TiB)/Cu in-situ composites prepared by hot-press with the sintering temperature just beneath the melting point of copper. Mater. Charact. 121, 76-81. https://doi.org/10.1016/j.matchar.2016.09.038
Mishra, S.K., Sherbakov, V.A. (2016). In-situ synthesis of Ti-Si-C fine grained composite with different amount of TiC: Microstructure and mechanical properties. Int. J. Refract. Met. Hard Mater. 59, 19-25. https://doi.org/10.1016/j.ijrmhm.2016.05.008
Mohanavel, V., Vijayakumar, M.D. (2021). Investigation on mechanical characterization of titanium matrix composites produced through powder metallurgy. Mater Today: Proc. 37 (2), 310-315. https://doi.org/10.1016/j.matpr.2020.05.271
Monisha, K., Shariff, S.M., Raju, R., Manonmani, J., Jayaraman, S. (2022). Titanium boride and titanium silicide phase formation by high power diode laser alloying of B4C and SiC particles with Ti: Microstructure, hardness and wear studies. Mater. Today Commun. 31, 103741. https://doi.org/10.1016/j.mtcomm.2022.103741
Montealegre-Melendez, I., Neubauer, E., Angerer, P., Danninger, H., Torralba, J.M. (2011). Influence of nano-reinforcements on the mechanical properties and microstructure of titanium matrix composites. Compos. Sci. Technol. 71 (8), 1154-1162. https://doi.org/10.1016/j.compscitech.2011.04.005
Montealegre-Meléndez, I., Neubauer, E., Arévalo, C., Rovira, A., Kitzmantel, M. (2016). Study of Titanium Metal Matrix Composites Reinforced by Boron Carbides and Amorphous Boron Particles Produced via Direct Hot Pressing. Key Eng. Mater. 704, 85-93. https://doi.org/10.4028/www.scientific.net/KEM.704.85
Montealegre-Meléndez, I., Arévalo, C., Perez-Soriano, E.M., Neubauer, E., Rubio-Escudero, C., Kitzmantel, M. (2017). Analysis of the Influence of Starting Materials and Processing Conditions on the Properties of W/Cu Alloys. Materials 10 (2), 142. https://doi.org/10.3390/ma10020142
PMid:28772502 PMCid:PMC5459155
Neubauer, E., Vály, L., Kitzmantel, M., Grech, D., Rovira, A., Montealegre-Meléndez, I., Arevalo, C. (2016). Titanium Matrix Composites with High Specific Stiffness. Key Eng. Mater. 704, 38-43. https://doi.org/10.4028/www.scientific.net/KEM.704.38
Ni, D.R., Geng, L., Zhang, J., Zheng, Z.Z. (2006). Effect of B4C particle size on microstructure of in situ titanium matrix composites prepared by reactive processing of Ti-B4C system. Scr. Mater. 55 (5), 429-432. https://doi.org/10.1016/j.scriptamat.2006.05.024
Pan, D., Zhang, X., Hou, X., Han, Y., Chu, M., Chen, B., Jia, L., Kondoh, K., Li, S. (2021). TiB nano-whiskers reinforced titanium matrix composites with novel nano-reticulated microstructure and high performance via composite powder by selective laser melting. Mater. Sci. Eng. A 799, 140137. https://doi.org/10.1016/j.msea.2020.140137
Pérez-Soriano, E.M., Arévalo, C., Montealegre-Meléndez, I., Neubauer, E., Kitzmantel, M. (2020). Influence of starting powders on the final properties of W-Cu alloys manufactured through rapid sinter pressing technique. Powder Metall. 64 (1), 75-81. https://doi.org/10.1080/00325899.2020.1847847
Popov, V.A., Shelekhov, E.V., Prosviryakov, A.S., Presniakov, M.Y., Sanatulin, B.R., Kotov, A.D., Khomutov, M.G. (2017). Particulate metal matrix composites development on the basis of in situ synthesis of TiC reinforcing nanoparticles during mechanical alloying. J. Alloys Compd. 707, 365-370. https://doi.org/10.1016/j.jallcom.2016.10.051
Radhakrishna Bhat, B.V., Subramanyam, J., Bhanu Prasad, V.V. (2002). Preparation of Ti-TiB-TiC & Ti-TiB composites by in-situ reaction hot pressing. Mater. Sci. Eng. A 325 (1-2), 126-130. https://doi.org/10.1016/S0921-5093(01)01412-5
Ranganath, S.A. (1997). A Review on Particulate-Reinforced Titanium Matrix Composites. J. Mater. Sci. 32 (1), 1-16.
Ravi Chandran, K.S., Panda, K.B., Sahay, S.S. (2004). TiBw-reinforced Ti composites: Processing, properties, application prospects, and research needs. JOM 56 (5), 42-48. https://doi.org/10.1007/s11837-004-0127-1
Sabahi Namini, A., Azadbeh, M., Shahedi Asl, M. (2017). Effect of TiB2 content on the characteristics of spark plasma sintered Ti-TiBw composites. Adv. Powder Technol. 28 (6), 1564-1572. https://doi.org/10.1016/j.apt.2017.03.028
Smith, P.R., Froes, F.H. (1984). Developments in Titanium Metal Matrix Composites. JOM 36, 19-26. https://doi.org/10.1007/BF03338403
Tang, C.Y., Wong, C.T., Zhang, L.N., Choy, M.T., Chow, T.W., Chan, K.C., Yue, T.M., Chen, Q. (2013). In situ formation of Ti alloy/TiC porous composites by rapid microwave sintering of Ti6Al4V/MWCNTs powder. J. Alloys Compd. 557, 67-72. https://doi.org/10.1016/j.jallcom.2012.12.147
Tkachenko, S., Cizek, J., Mušálek, R., Dvořák, K., Spotz, Z., Montufar, E.B., Chráska, T., Křupka, I., Čelko, L. (2018). Metal matrix to ceramic matrix transition via feedstock processing of SPS titanium composites alloyed with high silicone content. J. Alloys Compd. 764, 776-788. https://doi.org/10.1016/j.jallcom.2018.06.086
Tjong, S.C., Mai, Y.W. (2008). Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites. Compos. Sci. Technol. 68 (3-4), 583-601. https://doi.org/10.1016/j.compscitech.2007.07.016
Wang, T., Gwalani, B., Shukla, S., Frank, M., Mgishra, R.S. (2019). Development of in situ composites via reactive friction stir processing of Ti-B4C system. Compos. Part. B Eng. 172, 54-60. https://doi.org/10.1016/j.compositesb.2019.05.067
Wang, L., Jia, C., Yuan, Y., Huang, Y., Yang, L. (2022). Microstructure and wear behaviors of (TiB2+TiB+TiC)/Ti coating fabricated by laser wire deposition. Mater. Lett. 328, 133132. https://doi.org/10.1016/j.matlet.2022.133132
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.