Estudio comparativo del comportamiento de diversos materiales de refuerzo en matrices de titanio fabricados mediante compactación por sinterización rápida

Autores/as

DOI:

https://doi.org/10.3989/revmetalm.229

Palabras clave:

Análisis de rayos X, Compactación por sinterización rápida, Comportamiento tribológico, Materiales compuestos de base titanio, Microestructura

Resumen


En cuanto a los materiales compuestos de base titanio (TMC), sus propiedades dependen en gran medida del material de refuerzo empleado para su fabricación; dando lugar a una gran diversidad de investigaciones sobre los TMCs. Considerando la diversa tipología del refuerzo, en este estudio se trabajó con seis tipos de partículas cerámicas: B4C, SiB6, TiB2, TiC, TiN y BN. Para poder comparar su comportamiento e influencia sobre las propiedades de los TMCs, se empleó siempre la misma proporción con respecto al material de partida, 30% en volumen. Entre las técnicas que se conocen para desarrollar TMCs, la pulvimetalurgia ha sido propuesta como una vía favorable por un número significativo de autores. En este marco, para la realización del presente estudio, se utilizó la novedosa técnica Rapid Sinter Pressing, debido a su flexibilidad, repetibilidad y reproducibilidad, así como a sus reducidos tiempos de ciclo. La temperatura de procesamiento (930 °C) se estableció con la intención de evaluar cómo los refuerzos afectan de diferente manera, en función de su reactividad con la matriz de Ti. En este sentido, el objetivo principal de esta investigación ha sido realizar una comparativa del comportamiento de siete TMCs fabricados vía de Compactación por Sinterización Rápida (Rapid Sinter Pressing) bajo las mismas condiciones de procesado.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ammisetti, D.K., Kruthiventi, S.S.H. (2020). Recent trends on titanium metal matrix composites: A review. Mater. Today: Proc. 46 (10), 9730-9735. https://doi.org/10.1016/j.matpr.2020.08.732

Arévalo, C., Kitzmantel, M., Neubauer, E., Montealegre-Meléndez, I. (2016a). Development of Ti-MMCs by the use of different reinforcements via conventional Hot-Pressing. Key Eng. Mater. 704, 400-405. https://doi.org/10.4028/www.scientific.net/KEM.704.400

Arévalo, C., Montealegre-Meléndez, I., Ariza, E., Kitzmantel, M., Rubio-Escudero, C., Neubauer, E. (2016b). Influence of Sintering Temperature on the Microstructure and Mechanical Properties of In Situ Reinforced Titanium Composites by Inductive Hot Pressing. Materials 9 (11), 919. https://doi.org/10.3390/ma9110919

PMid:28774039 PMCid:PMC5457192

Arévalo, C., Montealegre-Meléndez, I., Pérez-Soriano, E.M., Ariza, E., Kitzmantel, M., Neubauer, E. (2017). Study of the Influence of TiB Content and Temperature in the Properties of In Situ Titanium Matrix Composites. Metals 7 (11), 457. https://doi.org/10.3390/met7110457

Arévalo, C., Beltrán, A.M., Montealegre-Meléndez, I., Pérez-Soriano, E.M., Kitzmantel, M., Neubauer, E. (2019). Electron microscopy characterization of the reaction layer in titanium composites reinforced with B4C particles and the effect of the presence of aluminium. Mater. Res. Express 6, 116518. https://doi.org/10.1088/2053-1591/ab450e

ASTM C373-14 (2014). Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products, Ceramic Tiles, and Glass Tiles. ASTM International, West Conshohocken, USA.

ASTM B962-13 (2014). Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes' Principle. ASTM International, West Conshohocken, USA.

Cheng, Q., Zhang, P., Ma, X., Wan, S., Jialin chen, Hu, W., Wang, W., Yi, G., Zhao, J. (2022). Microstructure evolution and wear mechanism of in situ prepared Ti-TiN cermet layers at high temperature. Compos. B Eng. 242, 110028. https://doi.org/10.1016/j.compositesb.2022.110028

Choi, B.J., Kim, I.Y., Lee, Y.Z., Kim, Y.J. (2014). Microstructure and friction/wear behavior of (TiB+TiC) particulate-reinforced titanium matrix composites. Wear 318 (1-2), 68-77. https://doi.org/10.1016/j.wear.2014.05.013

Davis, J.R. (1989). ASM Handbook: Nondestructive Evaluation and Quality Control.Vol. 17. ASM-International.

Fang, M., Han, Y., Shi, Z., Huang, G., Song, J., Lu, W. (2021). Embedding boron into Ti powder for direct laser deposited titanium matrix composite: Microstructure evolution and the role of nano-TiB network structure. Compos. B Eng. 211, 108683. https://doi.org/10.1016/j.compositesb.2021.108683

Farías, I., Olmos, L., Jiménez, O., Flores, M., Braem, A., Vleugels, J. (2019). Wear modes in open porosity titanium matrix composites with TiC addition processed by spark plasma sintering. Trans. Nonferrous Met. Soc. China 29 (8), 1653-1664. https://doi.org/10.1016/S1003-6326(19)65072-7

Hayat, M.D., Singh, H., He, Z., Cao, P. (2019). Titanium metal matrix composites: An overview. Compos. Part A Appl. Sci. Manuf. 121, 418-438. https://doi.org/10.1016/j.compositesa.2019.04.005

Huang, G., Guo, X., Han, Y., Wang, L., Lu, W., Zhang, D. (2016). Effect of extrusion dies angle on the microstructure and properties of (TiB+TiC)/Ti6Al4V in situ titanium matrix composite. Mater. Sci. Eng. A 667, 317-325. https://doi.org/10.1016/j.msea.2016.05.021

Jiang, Y., Wang, C., Liang, S., Ren, J., Du, X., Liu, F. (2016). TiB2(-TiB)/Cu in-situ composites prepared by hot-press with the sintering temperature just beneath the melting point of copper. Mater. Charact. 121, 76-81. https://doi.org/10.1016/j.matchar.2016.09.038

Mishra, S.K., Sherbakov, V.A. (2016). In-situ synthesis of Ti-Si-C fine grained composite with different amount of TiC: Microstructure and mechanical properties. Int. J. Refract. Met. Hard Mater. 59, 19-25. https://doi.org/10.1016/j.ijrmhm.2016.05.008

Mohanavel, V., Vijayakumar, M.D. (2021). Investigation on mechanical characterization of titanium matrix composites produced through powder metallurgy. Mater Today: Proc. 37 (2), 310-315. https://doi.org/10.1016/j.matpr.2020.05.271

Monisha, K., Shariff, S.M., Raju, R., Manonmani, J., Jayaraman, S. (2022). Titanium boride and titanium silicide phase formation by high power diode laser alloying of B4C and SiC particles with Ti: Microstructure, hardness and wear studies. Mater. Today Commun. 31, 103741. https://doi.org/10.1016/j.mtcomm.2022.103741

Montealegre-Melendez, I., Neubauer, E., Angerer, P., Danninger, H., Torralba, J.M. (2011). Influence of nano-reinforcements on the mechanical properties and microstructure of titanium matrix composites. Compos. Sci. Technol. 71 (8), 1154-1162. https://doi.org/10.1016/j.compscitech.2011.04.005

Montealegre-Meléndez, I., Neubauer, E., Arévalo, C., Rovira, A., Kitzmantel, M. (2016). Study of Titanium Metal Matrix Composites Reinforced by Boron Carbides and Amorphous Boron Particles Produced via Direct Hot Pressing. Key Eng. Mater. 704, 85-93. https://doi.org/10.4028/www.scientific.net/KEM.704.85

Montealegre-Meléndez, I., Arévalo, C., Perez-Soriano, E.M., Neubauer, E., Rubio-Escudero, C., Kitzmantel, M. (2017). Analysis of the Influence of Starting Materials and Processing Conditions on the Properties of W/Cu Alloys. Materials 10 (2), 142. https://doi.org/10.3390/ma10020142

PMid:28772502 PMCid:PMC5459155

Neubauer, E., Vály, L., Kitzmantel, M., Grech, D., Rovira, A., Montealegre-Meléndez, I., Arevalo, C. (2016). Titanium Matrix Composites with High Specific Stiffness. Key Eng. Mater. 704, 38-43. https://doi.org/10.4028/www.scientific.net/KEM.704.38

Ni, D.R., Geng, L., Zhang, J., Zheng, Z.Z. (2006). Effect of B4C particle size on microstructure of in situ titanium matrix composites prepared by reactive processing of Ti-B4C system. Scr. Mater. 55 (5), 429-432. https://doi.org/10.1016/j.scriptamat.2006.05.024

Pan, D., Zhang, X., Hou, X., Han, Y., Chu, M., Chen, B., Jia, L., Kondoh, K., Li, S. (2021). TiB nano-whiskers reinforced titanium matrix composites with novel nano-reticulated microstructure and high performance via composite powder by selective laser melting. Mater. Sci. Eng. A 799, 140137. https://doi.org/10.1016/j.msea.2020.140137

Pérez-Soriano, E.M., Arévalo, C., Montealegre-Meléndez, I., Neubauer, E., Kitzmantel, M. (2020). Influence of starting powders on the final properties of W-Cu alloys manufactured through rapid sinter pressing technique. Powder Metall. 64 (1), 75-81. https://doi.org/10.1080/00325899.2020.1847847

Popov, V.A., Shelekhov, E.V., Prosviryakov, A.S., Presniakov, M.Y., Sanatulin, B.R., Kotov, A.D., Khomutov, M.G. (2017). Particulate metal matrix composites development on the basis of in situ synthesis of TiC reinforcing nanoparticles during mechanical alloying. J. Alloys Compd. 707, 365-370. https://doi.org/10.1016/j.jallcom.2016.10.051

Radhakrishna Bhat, B.V., Subramanyam, J., Bhanu Prasad, V.V. (2002). Preparation of Ti-TiB-TiC & Ti-TiB composites by in-situ reaction hot pressing. Mater. Sci. Eng. A 325 (1-2), 126-130. https://doi.org/10.1016/S0921-5093(01)01412-5

Ranganath, S.A. (1997). A Review on Particulate-Reinforced Titanium Matrix Composites. J. Mater. Sci. 32 (1), 1-16.

Ravi Chandran, K.S., Panda, K.B., Sahay, S.S. (2004). TiBw-reinforced Ti composites: Processing, properties, application prospects, and research needs. JOM 56 (5), 42-48. https://doi.org/10.1007/s11837-004-0127-1

Sabahi Namini, A., Azadbeh, M., Shahedi Asl, M. (2017). Effect of TiB2 content on the characteristics of spark plasma sintered Ti-TiBw composites. Adv. Powder Technol. 28 (6), 1564-1572. https://doi.org/10.1016/j.apt.2017.03.028

Smith, P.R., Froes, F.H. (1984). Developments in Titanium Metal Matrix Composites. JOM 36, 19-26. https://doi.org/10.1007/BF03338403

Tang, C.Y., Wong, C.T., Zhang, L.N., Choy, M.T., Chow, T.W., Chan, K.C., Yue, T.M., Chen, Q. (2013). In situ formation of Ti alloy/TiC porous composites by rapid microwave sintering of Ti6Al4V/MWCNTs powder. J. Alloys Compd. 557, 67-72. https://doi.org/10.1016/j.jallcom.2012.12.147

Tkachenko, S., Cizek, J., Mušálek, R., Dvořák, K., Spotz, Z., Montufar, E.B., Chráska, T., Křupka, I., Čelko, L. (2018). Metal matrix to ceramic matrix transition via feedstock processing of SPS titanium composites alloyed with high silicone content. J. Alloys Compd. 764, 776-788. https://doi.org/10.1016/j.jallcom.2018.06.086

Tjong, S.C., Mai, Y.W. (2008). Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites. Compos. Sci. Technol. 68 (3-4), 583-601. https://doi.org/10.1016/j.compscitech.2007.07.016

Wang, T., Gwalani, B., Shukla, S., Frank, M., Mgishra, R.S. (2019). Development of in situ composites via reactive friction stir processing of Ti-B4C system. Compos. Part. B Eng. 172, 54-60. https://doi.org/10.1016/j.compositesb.2019.05.067

Wang, L., Jia, C., Yuan, Y., Huang, Y., Yang, L. (2022). Microstructure and wear behaviors of (TiB2+TiB+TiC)/Ti coating fabricated by laser wire deposition. Mater. Lett. 328, 133132. https://doi.org/10.1016/j.matlet.2022.133132

Publicado

2022-12-27

Cómo citar

Pérez-Soriano, E. M. ., Montealegre-Meléndez, I. ., Arévalo, C. ., Kitzmantel, M. ., & Neubauer, E. . (2022). Estudio comparativo del comportamiento de diversos materiales de refuerzo en matrices de titanio fabricados mediante compactación por sinterización rápida. Revista De Metalurgia, 58(4), e229. https://doi.org/10.3989/revmetalm.229

Número

Sección

Artículos