TiN hard coating as a candidate reference material for surface metrology in chemistry: characterization and quantification by bulk and surface analyses techniques

Authors

DOI:

https://doi.org/10.3989/revmetalm.231

Keywords:

ANOVA, Materials characterization, Metrology, TiN coating

Abstract


This study presents the synthesis and characterization of TiN hard coatings as a candidate reference material for surface metrology in chemistry. TiN coatings were grown on a silicon wafer with (111) orientation using dc reactive magnetron sputtering. X-ray diffraction confirms that the diffraction phase of TiN coatings is polycrystalline, electron microscopy demonstrates that the TiN coatings presents pyramidal-shaped grains ranging from sub-micrometer to nano-size scale and with an average thickness of 666 nm. According to micro Raman results, the presence of LO phonon modes confirms that the TiN coatings are crystalline in nature and no impurities are detected. The mechanical properties at the nanoscale are evaluated using resonance tracking acoustic force atomic microscopy. The chemical composition of the TiN reveals a close 1:1 atomic ratio. The ANOVA is used to evaluate the homogeneity of the TiN via a homogeneity test according to the ISO Guide 35:2017, while, regarding the chemical composition of the Ti, the Fisher’s test demonstrates that the batch can be considered as homogeneous.

Downloads

Download data is not yet available.

References

Caicedo, J.C., Gómez de Prieto, M.E. (2006). Producción y Caracterización de Superredes de Nitruro de Titanio-Nitruro de Zirconio como Recubrimientos duros sobre Acero para Sustitución de un producto Importado en el Corte del Papel. Tesis de Pregrado, Universidad del Valle, Santiago de Cali, Colombia.

Cullity, B.C., Stock, S.R. (2001). Elements of X-Ray Diffraction. 3rd Ed., Prentice-Hall Inc., pp. 96-102.

Chen, S.X., Li, J., Zhong, P.S. (2019). Two-sample and ANOVA tests for high dimensional means. Ann. Stat. 47 (3), 1443-1474. https://doi.org/10.1214/18-AOS1720

Das, S., Guha, S., Ghadai, R., Swain, B.P. (2021). A comparative analysis over different properties of TiN, TiAlN and TiAlSiN thin film coatings grown in nitrogen gas atmosphere. Mater. Chem. Phys. 258, 123866. https://doi.org/10.1016/j.matchemphys.2020.123866

Ellison, S.L.R. (2015). Homogeneity studies and ISO Guide 35:2006. Accred. Qual. Assur. 20, 519-528. https://doi.org/10.1007/s00769-015-1162-z

Enriquez-Flores, C.I., Gervacio-Arciniega, J.J., Cruz-Valeriano, E., De Urquijo-Ventura, P., Gutierrez-Salazar, B.J., Espinoza-Beltran, F.J. (2012). Fast frequency sweeping in resonance-tracking SPM for high-resolution AFAM and PFM imaging. Nanotechnology 23, 495705. https://doi.org/10.1088/0957-4484/23/49/495705

PMid:23149480

Falcone, R., Sommariva, G., Verità, M. (2006). WDXRF, EPMA and SEM/EDX quantitative chemical analyses of small glass samples. Mikrochim. Acta 155, 137-140. https://doi.org/10.1007/s00604-006-0531-z

Fazel, Z.A., Elmkhah, H., Fattah-Alhosseini, A., Babaei, K., Meghdari, M. (2020). Comparing electrochemical behavior of applied CrN/TiN nanoscale multilayer and TiN single-layer coatings deposited by CAE-PVD method. J. Asian Ceram. Soc. 8, 510-518. https://doi.org/10.1080/21870764.2020.1756065

Feng, X., Zhang, Y., Hu, H., Zheng, Y., Zhang, K., Zhou, H. (2017). Comparison of mechanical behavior of TiN, TiNC, CrN/TiNC, TiN/TiNC films on 9Cr18 steel by PVD. Appl. Surf. Sci. 422, 266-272. https://doi.org/10.1016/j.apsusc.2017.05.042

Ferrarini, P., Lamagna, L., Revello, F.D. (2022). Thin Films Characterization and Metrology. In: Silicon Sensors and Actuators. Vigna, B., Ferrari, P., Villa, F.F., Lasalandra, E., Zerbini, S. (Eds), Springer. https://doi.org/10.1007/978-3-030-80135-9_4

.

Hartung, J., Argaç, D., Makambi, K.H. (2002). Small sample properties of tests on homogeneity in one-way Anova and meta-analysis. Stat. Pap. 43, 197-235. https://doi.org/10.1007/s00362-002-0097-8

Hernández, L.C., Ponce, L., Fundora, A., López, E., Pérez, E. (2001). Nanohardness and Residual Stress in TiN Coatings. Materials 4 (5), 929-940. https://doi.org/10.3390/ma4050929

PMid:28879958 PMCid:PMC5448585

Hussein, M.A., Adesina, A.Y., Kumar, A.M., Sorour, A.A., Ankah, N., Al-Aqeeli, N. (2020). Mechanical, in-vitro corrosion, and tribological characteristics of TiN coating produced by cathodic arc physical vapor deposition on Ti20Nb13Zr alloy for biomedical applications. Thin Solid Films 709, 138183. https://doi.org/10.1016/j.tsf.2020.138183

Ipaz Cuastumal, L.M., Zambrano, G.A. (2013). Propiedades Mecánicas y Tribológicas de Recubrimientos Ternarios Nanoestructurados basados en Titani, Aluninio y Cromo obtenidos por el Método de Co-Sputtering. Tesis doctoral, Universidad del Valle, Santiago de Cali, Colombia.

ISO Guide 35 (2017). Reference materials - Guidance for characterization and assessment of homogeneity and stability.

ISO 20579-4 (2018). Surface chemical analysis - Guidelines to sample handling, preparation and mounting - Part 4: Reporting information related to the history, preparation, handling and mounting of nano-objects prior to surface analysis.

Kim, K.J., Kim, A., Kim, C.S., Song, S.W., Ruh, H., Unger, W.E.S., Radnik, J., Mata-Salazar, J., Juarez-García, J.M., Cortazar-Martínez, O. (2021), Thickness measurement of nm HfO2 films. Metrologia 58, 1A. https://doi.org/10.1088/0026-1394/58/1A/08016

Lu, G., Yu, L., Ju, H., Zuo, B., Xu, J. (2020). Influence of nitrogen content on the thermal diffusivity of TiN films prepared by magnetron sputtering. Surf. Eng. 36 (2), 192-198. https://doi.org/10.1080/02670844.2019.1646964

Marinenko, R.B., Sieber, J.R., Yu, L.L., Butler, T.A., Leigh, S. (2004). A New NIST SRM® for Microanalysis and X-ray Fluorescence, TiAl(NbW) Alloy. Microsc. Microanal. 10 (2), 926-927. https://doi.org/10.1017/S1431927604884708

Martin, C.G., Games, P.A. (1977). Anova Tests for Homogeneity of Variance: Nonnormality and Unequal Samples. J. Educ. Stat. 2 (3), 187-206. https://doi.org/10.3102/10769986002003187

Mathia, T.G., Pawlus, P., Wieczorowski, M. (2011). Recent trends in surface metrology. Wear 271 (3-4), 494-508. https://doi.org/10.1016/j.wear.2010.06.001

Matthews, A. (1985). Titanium Nitride PVD Coating Technology. Surf. Eng. 1(2), 93-104, https://doi.org/10.1179/sur.1985.1.2.93

Muratore, C., Hu, J.J., Voevedin, A.A. (2007). Adaptive nanocomposite coatings with a titanium nitride diffusion barrier mask for high-temperature tribological applications. Thin Solid Films 515 (7-8). https://doi.org/10.1016/j.tsf.2006.09.051

Mustapha, N., Fekkai, Z. (2020). Impact of nitrogen reactive gas and substrate temperature on the optical, electrical and structural properties of sputtered TiN thin films. J. Mater. Sci. Mater. Electron. 31, 20009-20021. https://doi.org/10.1007/s10854-020-04523-z

Rojas-Chávez, H., González-Domínguez, J.L., Román-Doval, R., Juárez-García, J.M., Daneu, N., Farías, R. (2018). ZnTe semiconductor nanoparticles: A chemical approach of the mechanochemical synthesis. Mater. Sci. Semicond. Process. 86, 128-138. https://doi.org/10.1016/j.mssp.2018.06.029

Rossbach, M., Grobecker, K.-H. (1999). Homogeneity studies of reference materials by solid sampling - AAS and INAA. Accred. Qual. Assur. 4, 498-503. https://doi.org/10.1007/s007690050422

Senthilkumar, V., Venkatachalam, S., Viswanathan, C., Gopal, S., Narayandass, S.K., Mangalaraj, D., Wilson, K.C., Vijayakumar, K.P. (2005). Influence of substrate temperature on the properties of vacuum evaporated InSb films. Cryst. Res. Technol. 40 (6), 573-578. https://doi.org/10.1002/crat.200410385

Silva, F.C., Tunes, M.A., Sagás, J.C., Fontana, L.C., De Lima, N. B., Schön, C.G. (2020). Mechanical properties of homogeneous and nitrogen graded TiN thin films. Thin Solid Films 710, 138268. https://doi.org/10.1016/j.tsf.2020.138268

Spengler, W., Kaiser, R. (1976). First and second order Raman scattering in transition metal compounds. Solid State Commun. 18 (7), 881-884. https://doi.org/10.1016/0038-1098(76)90228-3

Wolfgang, E.S., Unger, Fujimoto, T. (2022). The Surface Analysis Working Group at the Consultative Committee for Amount of Substance, Metrology in Chemistry and Biology: A successful initiative by Martin Seah. Surf. Interface Anal. 54 (4), 314-319. https://doi.org/10.1002/sia.7033

Xiao, L., Yan, D., He, J., Zhu, L., Dong, Y., Zhang, J., Li, X. (2007). Nanostructured TiN coating prepared by reactive plasma spraying in atmosphere. Appl. Surf. Sci. 253 (18), 7535-7539. https://doi.org/10.1016/j.apsusc.2007.03.062

Yang, Y., Wang, T., Yao, T., Li, G., Sun, Y., Cao, X., Ma, L., Peng, S. (2020). Preparation of a novel TiN/TiNxOy/SiO2 composite ceramic films on aluminum substrate as a solar selective absorber by magnetron sputtering. J. Alloys Compd. 815, 152209. https://doi.org/10.1016/j.jallcom.2019.152209

Published

2022-12-27

How to Cite

Juárez-García, J. M. ., Morales-Hernández, J. ., Gutiérrez-Peralta, A. ., Cruz-Valeriano, E. ., Ramírez-Bon, R. ., & Yañez Limón, J. M. . (2022). TiN hard coating as a candidate reference material for surface metrology in chemistry: characterization and quantification by bulk and surface analyses techniques. Revista De Metalurgia, 58(4), e231. https://doi.org/10.3989/revmetalm.231

Issue

Section

Articles

Funding data

Consejo Nacional de Ciencia y Tecnología
Grant numbers LN2015-254119

Tecnológico Nacional de México
Grant numbers 616117-P

Most read articles by the same author(s)