TiN hard coating as a candidate reference material for surface metrology in chemistry: characterization and quantification by bulk and surface analyses techniques
DOI:
https://doi.org/10.3989/revmetalm.231Keywords:
ANOVA, Materials characterization, Metrology, TiN coatingAbstract
This study presents the synthesis and characterization of TiN hard coatings as a candidate reference material for surface metrology in chemistry. TiN coatings were grown on a silicon wafer with (111) orientation using dc reactive magnetron sputtering. X-ray diffraction confirms that the diffraction phase of TiN coatings is polycrystalline, electron microscopy demonstrates that the TiN coatings presents pyramidal-shaped grains ranging from sub-micrometer to nano-size scale and with an average thickness of 666 nm. According to micro Raman results, the presence of LO phonon modes confirms that the TiN coatings are crystalline in nature and no impurities are detected. The mechanical properties at the nanoscale are evaluated using resonance tracking acoustic force atomic microscopy. The chemical composition of the TiN reveals a close 1:1 atomic ratio. The ANOVA is used to evaluate the homogeneity of the TiN via a homogeneity test according to the ISO Guide 35:2017, while, regarding the chemical composition of the Ti, the Fisher’s test demonstrates that the batch can be considered as homogeneous.
Downloads
References
Caicedo, J.C., Gómez de Prieto, M.E. (2006). Producción y Caracterización de Superredes de Nitruro de Titanio-Nitruro de Zirconio como Recubrimientos duros sobre Acero para Sustitución de un producto Importado en el Corte del Papel. Tesis de Pregrado, Universidad del Valle, Santiago de Cali, Colombia.
Cullity, B.C., Stock, S.R. (2001). Elements of X-Ray Diffraction. 3rd Ed., Prentice-Hall Inc., pp. 96-102.
Chen, S.X., Li, J., Zhong, P.S. (2019). Two-sample and ANOVA tests for high dimensional means. Ann. Stat. 47 (3), 1443-1474. https://doi.org/10.1214/18-AOS1720
Das, S., Guha, S., Ghadai, R., Swain, B.P. (2021). A comparative analysis over different properties of TiN, TiAlN and TiAlSiN thin film coatings grown in nitrogen gas atmosphere. Mater. Chem. Phys. 258, 123866. https://doi.org/10.1016/j.matchemphys.2020.123866
Ellison, S.L.R. (2015). Homogeneity studies and ISO Guide 35:2006. Accred. Qual. Assur. 20, 519-528. https://doi.org/10.1007/s00769-015-1162-z
Enriquez-Flores, C.I., Gervacio-Arciniega, J.J., Cruz-Valeriano, E., De Urquijo-Ventura, P., Gutierrez-Salazar, B.J., Espinoza-Beltran, F.J. (2012). Fast frequency sweeping in resonance-tracking SPM for high-resolution AFAM and PFM imaging. Nanotechnology 23, 495705. https://doi.org/10.1088/0957-4484/23/49/495705
PMid:23149480
Falcone, R., Sommariva, G., Verità, M. (2006). WDXRF, EPMA and SEM/EDX quantitative chemical analyses of small glass samples. Mikrochim. Acta 155, 137-140. https://doi.org/10.1007/s00604-006-0531-z
Fazel, Z.A., Elmkhah, H., Fattah-Alhosseini, A., Babaei, K., Meghdari, M. (2020). Comparing electrochemical behavior of applied CrN/TiN nanoscale multilayer and TiN single-layer coatings deposited by CAE-PVD method. J. Asian Ceram. Soc. 8, 510-518. https://doi.org/10.1080/21870764.2020.1756065
Feng, X., Zhang, Y., Hu, H., Zheng, Y., Zhang, K., Zhou, H. (2017). Comparison of mechanical behavior of TiN, TiNC, CrN/TiNC, TiN/TiNC films on 9Cr18 steel by PVD. Appl. Surf. Sci. 422, 266-272. https://doi.org/10.1016/j.apsusc.2017.05.042
Ferrarini, P., Lamagna, L., Revello, F.D. (2022). Thin Films Characterization and Metrology. In: Silicon Sensors and Actuators. Vigna, B., Ferrari, P., Villa, F.F., Lasalandra, E., Zerbini, S. (Eds), Springer. https://doi.org/10.1007/978-3-030-80135-9_4
.
Hartung, J., Argaç, D., Makambi, K.H. (2002). Small sample properties of tests on homogeneity in one-way Anova and meta-analysis. Stat. Pap. 43, 197-235. https://doi.org/10.1007/s00362-002-0097-8
Hernández, L.C., Ponce, L., Fundora, A., López, E., Pérez, E. (2001). Nanohardness and Residual Stress in TiN Coatings. Materials 4 (5), 929-940. https://doi.org/10.3390/ma4050929
PMid:28879958 PMCid:PMC5448585
Hussein, M.A., Adesina, A.Y., Kumar, A.M., Sorour, A.A., Ankah, N., Al-Aqeeli, N. (2020). Mechanical, in-vitro corrosion, and tribological characteristics of TiN coating produced by cathodic arc physical vapor deposition on Ti20Nb13Zr alloy for biomedical applications. Thin Solid Films 709, 138183. https://doi.org/10.1016/j.tsf.2020.138183
Ipaz Cuastumal, L.M., Zambrano, G.A. (2013). Propiedades Mecánicas y Tribológicas de Recubrimientos Ternarios Nanoestructurados basados en Titani, Aluninio y Cromo obtenidos por el Método de Co-Sputtering. Tesis doctoral, Universidad del Valle, Santiago de Cali, Colombia.
ISO Guide 35 (2017). Reference materials - Guidance for characterization and assessment of homogeneity and stability.
ISO 20579-4 (2018). Surface chemical analysis - Guidelines to sample handling, preparation and mounting - Part 4: Reporting information related to the history, preparation, handling and mounting of nano-objects prior to surface analysis.
Kim, K.J., Kim, A., Kim, C.S., Song, S.W., Ruh, H., Unger, W.E.S., Radnik, J., Mata-Salazar, J., Juarez-García, J.M., Cortazar-Martínez, O. (2021), Thickness measurement of nm HfO2 films. Metrologia 58, 1A. https://doi.org/10.1088/0026-1394/58/1A/08016
Lu, G., Yu, L., Ju, H., Zuo, B., Xu, J. (2020). Influence of nitrogen content on the thermal diffusivity of TiN films prepared by magnetron sputtering. Surf. Eng. 36 (2), 192-198. https://doi.org/10.1080/02670844.2019.1646964
Marinenko, R.B., Sieber, J.R., Yu, L.L., Butler, T.A., Leigh, S. (2004). A New NIST SRM® for Microanalysis and X-ray Fluorescence, TiAl(NbW) Alloy. Microsc. Microanal. 10 (2), 926-927. https://doi.org/10.1017/S1431927604884708
Martin, C.G., Games, P.A. (1977). Anova Tests for Homogeneity of Variance: Nonnormality and Unequal Samples. J. Educ. Stat. 2 (3), 187-206. https://doi.org/10.3102/10769986002003187
Mathia, T.G., Pawlus, P., Wieczorowski, M. (2011). Recent trends in surface metrology. Wear 271 (3-4), 494-508. https://doi.org/10.1016/j.wear.2010.06.001
Matthews, A. (1985). Titanium Nitride PVD Coating Technology. Surf. Eng. 1(2), 93-104, https://doi.org/10.1179/sur.1985.1.2.93
Muratore, C., Hu, J.J., Voevedin, A.A. (2007). Adaptive nanocomposite coatings with a titanium nitride diffusion barrier mask for high-temperature tribological applications. Thin Solid Films 515 (7-8). https://doi.org/10.1016/j.tsf.2006.09.051
Mustapha, N., Fekkai, Z. (2020). Impact of nitrogen reactive gas and substrate temperature on the optical, electrical and structural properties of sputtered TiN thin films. J. Mater. Sci. Mater. Electron. 31, 20009-20021. https://doi.org/10.1007/s10854-020-04523-z
Rojas-Chávez, H., González-Domínguez, J.L., Román-Doval, R., Juárez-García, J.M., Daneu, N., Farías, R. (2018). ZnTe semiconductor nanoparticles: A chemical approach of the mechanochemical synthesis. Mater. Sci. Semicond. Process. 86, 128-138. https://doi.org/10.1016/j.mssp.2018.06.029
Rossbach, M., Grobecker, K.-H. (1999). Homogeneity studies of reference materials by solid sampling - AAS and INAA. Accred. Qual. Assur. 4, 498-503. https://doi.org/10.1007/s007690050422
Senthilkumar, V., Venkatachalam, S., Viswanathan, C., Gopal, S., Narayandass, S.K., Mangalaraj, D., Wilson, K.C., Vijayakumar, K.P. (2005). Influence of substrate temperature on the properties of vacuum evaporated InSb films. Cryst. Res. Technol. 40 (6), 573-578. https://doi.org/10.1002/crat.200410385
Silva, F.C., Tunes, M.A., Sagás, J.C., Fontana, L.C., De Lima, N. B., Schön, C.G. (2020). Mechanical properties of homogeneous and nitrogen graded TiN thin films. Thin Solid Films 710, 138268. https://doi.org/10.1016/j.tsf.2020.138268
Spengler, W., Kaiser, R. (1976). First and second order Raman scattering in transition metal compounds. Solid State Commun. 18 (7), 881-884. https://doi.org/10.1016/0038-1098(76)90228-3
Wolfgang, E.S., Unger, Fujimoto, T. (2022). The Surface Analysis Working Group at the Consultative Committee for Amount of Substance, Metrology in Chemistry and Biology: A successful initiative by Martin Seah. Surf. Interface Anal. 54 (4), 314-319. https://doi.org/10.1002/sia.7033
Xiao, L., Yan, D., He, J., Zhu, L., Dong, Y., Zhang, J., Li, X. (2007). Nanostructured TiN coating prepared by reactive plasma spraying in atmosphere. Appl. Surf. Sci. 253 (18), 7535-7539. https://doi.org/10.1016/j.apsusc.2007.03.062
Yang, Y., Wang, T., Yao, T., Li, G., Sun, Y., Cao, X., Ma, L., Peng, S. (2020). Preparation of a novel TiN/TiNxOy/SiO2 composite ceramic films on aluminum substrate as a solar selective absorber by magnetron sputtering. J. Alloys Compd. 815, 152209. https://doi.org/10.1016/j.jallcom.2019.152209
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.
Funding data
Consejo Nacional de Ciencia y Tecnología
Grant numbers LN2015-254119
Tecnológico Nacional de México
Grant numbers 616117-P