Effect of yttria addition on the microstructure and mechanical behavior of ODS ferritic alloys processed by High Energy Milling and Spark Plasma Sintering

Authors

DOI:

https://doi.org/10.3989/revmetalm.236

Keywords:

Corrosion, Powder, Sintering

Abstract


Oxide dispersion strengthened (ODS) ferritic alloys are structural materials used in nuclear fusion reactors, which exhibit enhanced mechanical properties, as well as corrosion and irradiation resistance. In the present work, ODS ferritic alloys with composition Fe-14Cr-1.5W-0.4Ti-(0, 0.4, 0.8) Y2O3 (in wt.%) were prepared employing high energy milling (HEM) followed by Spark Plasma Sintering (SPS). The particle size distribution (PSD) of the milled powders was characterized by laser diffraction. These powders and the sintered materials produced were characterized using X-ray diffraction (XRD), and scanning electron microscopy (SEM). The sintered materials were also characterized by dilatometry, diametral compression, Vickers microhardness, and corrosion rate tests. The largest Young’s modulus, microhardness, and dimensional shrinkage/expansion were obtained for the 0.8 wt.% Y2O3 alloy. However, this alloy was the least ductile. Furthermore, the 0.8 wt.% Y2O3 alloy was the one with the least dimensional change. According to the potentiodynamic polarization studies, it was found that the protective layer of Cr2O3 formed on the surface of the three alloys studied was less effective for the yttria-free alloy, since in this case the rupture of such protective layer occurred earlier than for the case of the yttria-containing alloys. Based on these results, it is suggested that the 0.8 wt.% Y2O3 alloy having fine microstructure could constitute a potential alternative as a structural material for Gen IV-type reactors.

Downloads

Download data is not yet available.

References

Abenojar, J., Velasco, F., Martínez, M.A. (2006). Manufacturing of Porous Boron Steels Potentially Useful as Nuclear Materials. J. Nucl. Sci. Technol. 43 (8), 866-873. https://www.tandfonline.com/doi/abs/10.1080/18811248.2006.9711171. https://doi.org/10.1080/18811248.2006.9711171

Ahmadi, H., Nouri, M. (2010). Beneficial effects of yttrium on mechanical failure and chemical stability of the passive film in 6061 aluminum alloy. J. Mater. Sci. 45 (13), 3426-3432. https://doi.org/10.1007/s10853-010-4368-9

Auger, M.A., De Castro, V., Leguey, T., Muñoz, A., Pareja, R. (2013). Microstructure and mechanical behavior of ODS and non-ODS Fe-14Cr model alloys produced by spark plasma sintering. J. Nucl. Mater. 436 (1-3), 68-75. https://doi.org/10.1016/j.jnucmat.2013.01.331

Buchanan, R.A., Stansbury, E.E. (2012). 4 - Electrochemical Corrosion. In Handbook of Environmental Degradation of Materials. Second Edition, William Andrew Publishing, pp. 87-125. https://doi.org/10.1016/B978-1-4377-3455-3.00004-3

Cayron, C., Rath, E., Chu, I., Launois, S. (2004). Microstructural evolution of Y2O3 and MgAl2O4 ODS EUROFER steels during their elaboration by mechanical milling and hot isostatic pressing. J. Nucl. Mater. 335 (1), 83-102. https://doi.org/10.1016/j.jnucmat.2004.06.010

Chang-Zhen, W., Shu-Qhing, Y., Xin, Z. (1985). A Study On Thermodynamic Properties Of Y2O3·Cr2O3 Compound. Acta Phys. Sin. 34 (8), 1017-1026. https://doi.org/10.7498/aps.34.1017

Dash, M.K., Mythili, R., Ravi, R., Sakthivel, T., Dasgupta, A., Soroja, S., Bakshi, S.R. (2018). Microstructure and mechanical properties of oxide dispersion strengthened 18Cr-ferritic steel consolidated by spark plasma sintering. Mater. Sci. Eng. A 736, 137-147. https://doi.org/10.1016/j.msea.2018.08.093

Dharmalingam, G., Mariappan, R., Arun Prasad, M. (2018). Microstructure and Mechanical Properties of Hot Pressed 16.5CR Ferritic ODS Steel Developed Through Mechanical Alloying. IJMPERD 8 (2), 699-708. https://doi.org/10.24247/ijmperdapr201882

Fu, J., Brouwer, J.C., Richardson, I.M., Hermans, M.J.M. (2019). Effect of mechanical alloying and spark plasma sintering on the microstructure and mechanical properties of ODS Eurofer. Mater. Des. 177, 107849. https://doi.org/10.1016/j.matdes.2019.107849

Gao, R., Zhang, T., Wang, X.P., Fang, Q.F., Liu, C.S. (2014). Effect of zirconium addition on the microstructure and mechanical properties of ODS ferritic steels containing aluminum. J. Nucl. Mater. 444 (1-3), 462-468. https://doi.org/10.1016/j.jnucmat.2013.10.038

Grimes, R.W., Konings, R.J.M., Edwards, L. (2008). Greater tolerance for nuclear materials. Nat. Mater. 7 (9), 683-685. https://doi.org/10.1038/nmat2266 PMid:18719698

Hilger, I., Bergner, F., Weißgärber, T. (2015). Bimodal Grain Size Distribution of Nanostructured Ferritic ODS Fe-Cr Alloys. In Sintering 2014. Wiley Subscription Services, Inc., 98 (11), pp. 3576-3581. https://doi.org/10.1111/jace.13833

Hilger, I., Boulnat, X., Hoffmann, J., Testani, C., Bergner, F., De Carlan, Y., Ferraro, F., Ulbricht, A. (2016). Fabrication and characterization of oxide dispersion strengthened (ODS) 14Cr steels consolidated by means of hot isostatic pressing, hot extrusion and spark plasma sintering. J. Nucl. Mater. 472, 206-214. https://doi.org/10.1016/j.jnucmat.2015.09.036

Karak, S.K., Dutta Majumdar, J., Lojkowski, W., Michalski, A., Ciupinski, L., Kurzydlowski, K.J., Manna, I. (2012). Microstructure and mechanical properties of nano-Y2O3 dispersed ferritic steel synthesized by mechanical alloying and consolidated by pulse plasma sintering. Philos. Mag. 92 (5), 516-534. https://doi.org/10.1080/14786435.2011.619508

Kumar, D., Prakash, U., Dabhade, V.V., Laha, K., Sakthivel, T. (2017). High yttria ferritic ODS steels through powder forging. J. Nucl. Mater. 488, 75-82. https://doi.org/10.1016/j.jnucmat.2016.12.043

Kumar, D., Prakash, U., Dabhade, V.V., Laha, K., Sakthivel, T. (2018). Influence of Yttria on Oxide Dispersion Strengthened (ODS) Ferritic Steel. Mater. Today: Proc. 5 (2, Part 1), 3909-3913. https://doi.org/10.1016/j.matpr.2017.11.646

Mihalache, V., Mercioniu, I., Velea, A., Palade, P. (2019). Effect of the process control agent in the ball-milled powders and SPS-consolidation temperature on the grain refinement, density and Vickers hardness of Fe14Cr ODS ferritic alloys. Powder Technol. 347, 103-113. https://doi.org/10.1016/j.powtec.2019.02.006

Ningshen, S., Sakairi, M., Suzuki, K., Ukai, S. (2014). The corrosion resistance and passive film compositions of 12% Cr and 15% Cr oxide dispersion strengthened steels in nitric acid media. Corros. Sci. 78, 322-334. https://doi.org/10.1016/j.corsci.2013.10.015

Noh, S., Choi, B.K., Kang, S.H., Kim, T. (2014). Influence of mechanical alloying atmospheres on the microstructures and mechanical properties of 15Cr ODS steels. Nucl. Eng. Technol. 46 (6), 857-862. https://doi.org/10.5516/NET.07.2013.096

Oksiuta, Z., Olier, P., De Carlan, Y., Baluc, N. (2009). Development and characterisation of a new ODS ferritic steel for fusion reactor application. J. Nucl. Mater. 393 (1), 114-119. https://doi.org/10.1016/j.jnucmat.2009.05.013

Park, J.J., Hong, S.M., Park, E.K., Lee, M.K., Rhee, C.K. (2012). Synthesis of Fe based ODS alloys by a very high speed planetary milling process. J. Nucl. Mater. 428 (1-3), 35-39. https://doi.org/10.1016/j.jnucmat.2011.12.027

Perera, F. (2017). Pollution from fossil-Fuel combustion is the leading environmental threat to global pediatric health and equity: Solutions Exist. Int. J. Environ. Res. Public Health 15 (1), p. 16. https://doi.org/10.3390/ijerph15010016 PMid:29295510 PMCid:PMC5800116

Rajan, K., Sarma, V.S., Kutty, T.R.G., Murty, B.S. (2012). Hot hardness behaviour of ultrafine grained ferritic oxide dispersion strengthened alloys prepared by mechanical alloying and spark plasma sintering. Mater. Sci. Eng. A 558, 492-496. https://doi.org/10.1016/j.msea.2012.08.033

Rajan, K., Shanmugasundaram, T., Subramanya Sarma, V. Murty, B.S. (2013). Effect of Y2O3 on Spark Plasma Sintering Kinetics of Nanocrystalline 9Cr-1Mo Ferritic Oxide Dispersion-Strengthened Steels. Metall. Mater. Trans. A 44 (9), 4037-4041. https://doi.org/10.1007/s11661-013-1845-1

Ramanujam, A. (2001). Purex and Thorex Processes (Aqueous Reprocessing). In Encyclopedia of Materials: Science and Technology. Second Edition, Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, T. (Ed.), Elsevier, pp. 7918-7924. https://doi.org/10.1016/B0-08-043152-6/01426-1

Sánchez-Gutiérrez, J., Chao, J., Vivas, J., Galvez, F., Capdevila, C. (2017). Influence of texture on impact toughness of ferritic Fe-20Cr-5Al oxide dispersion strengthened steel. Materials 10 (7), 745. https://doi.org/10.3390/ma10070745 PMid:28773104 PMCid:PMC5551788

Sun, Q.X., Zhang, T., Wang, X.P., Fang, Q.F., Hao, T., Liu, C.S. (2012). Microstructure and mechanical properties of oxide dispersion strengthened ferritic steel prepared by a novel route. J. Nucl. Mater. 424 (1-3), 279-284. https://doi.org/10.1016/j.jnucmat.2011.12.020

Torralba, J.M., Fuentes-Pacheco, L., García-Rodríguez, N., Campos, M. (2013). Development of high performance powder metallurgy steels by high-energy milling. Adv. Powder Technol. 24 (5), 813-817. https://doi.org/10.1016/j.apt.2012.11.015

Verhiest, K., Al Mazouzi, A., De Wispelaere, N., Petrov, R., Claessens, S. (2009). Development of oxides dispersion strengthened steels for high temperature nuclear reactor applications. J. Nucl. Mater. 385 (2), 308-311. https://doi.org/10.1016/j.jnucmat.2008.12.006

Yamamoto, M., Ukai, S., Hayashi, S., Kaito, T., Ohtsuka, S. (2010). Formation of residual ferrite in 9Cr-ODS ferritic steels. Mater. Sci. Eng. A 527 (16-17), 4418-4423. https://doi.org/10.1016/j.msea.2010.03.079

Yaskiv, O.I., Fedirko, V.M (2014). Oxidation/Corrosion Behaviour of ODS Ferritic/Martensitic Steels in Pb Melt at Elevated Temperature. Int. J. Nucl. Energy ID 657689, 1-8. https://doi.org/10.1155/2014/657689

Zhang, H., Huang, Y., Ning, H., Williams, C.A., London, A.J., Dawson, K., Hong, Z., Gorley, M.J., Grovenor, R.M., Tatlock, G.J., Roberts, S.G., Reece, M.J., Yan, H., Grant, P.S. (2015). Processing and microstructure characterisation of oxide dispersion strengthened Fe-14Cr-0.4Ti-0.25Y2O3 ferritic steels fabricated by spark plasma sintering. J. Nucl. Mater. 464, 61-68. https://doi.org/10.1016/j.jnucmat.2015.04.029

Zhou, X., Liu, Y., Qiao, Z., Guo, Q., Liu, Ch., Yu, L., Li, H. (2017). Effects of cooling rates on δ-ferrite/γ-austenite formation and martensitic transformation in modified ferritic heat resistant steel. Fusion Eng. Des. 125, 354-360. https://doi.org/10.1016/j.fusengdes.2017.05.095

Zinkle, S.J., Busby, J.T. (2009). Structural materials for fission & fusion energy. Materials Today 12 (11), 12-19. https://doi.org/10.1016/S1369-7021(09)70294-9

Zinkle, S.J., Boutard, J.L., Hoelzer, D.T., Kimura, A., Lindau, R., Odette, G.R., Rieth, M., Tan, L., Tanigawa, H. (2017). Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications. Nuclear Fusion 57 (9), 092005. https://doi.org/10.1088/1741-4326/57/9/092005

Published

2023-04-27

How to Cite

Salazar-Román, A. R., López-Cuevas, J. ., Arganis-Juárez, C. R., Méndez-García, J. C. ., & Rendón-Angeles, J. C. . (2023). Effect of yttria addition on the microstructure and mechanical behavior of ODS ferritic alloys processed by High Energy Milling and Spark Plasma Sintering. Revista De Metalurgia, 59(1), e236. https://doi.org/10.3989/revmetalm.236

Issue

Section

Articles