Characterizing the mechanical deformation response of AHSS steels: A comparative study of cyclic plasticity models under monotonic and reversal loading




Advanced high strength steels, Cyclic plasticity, Finite element modeling, Kinematic hardening, TRIP, TWIP


This study evaluates the performance of a user-defined combined hardening modeling method for advanced high-strength steels (AHSS) under monotonic and reversal loading conditions. The plastic behavior of TWIP980 and TRIP980 AHSS sheet metals is investigated using a cyclic plasticity modeling approach. The model incorporates an isotropic von Mises yield criterion and a single-term Chaboche nonlinear kinematic hardening rule. Monotonic and reversal loading stress-strain curves are predicted and compared with experimental results. The model accurately captured the Bauschinger effect for both materials, but it needs help to effectively model the permanent softening behavior observed in TWIP980 steel. Overall, the proposed modeling method agrees well with experimental results for monotonic loading and accurately represents the Bauschinger effect and transient behavior during reversal loading. However, better improvements are needed to capture the permanent softening behavior of TWIP980 steel.


Download data is not yet available.


Akşen, T.A., Firat, M. (2023). Effect of the yield surface evolution on the earing defect prediction. Rev. Metal. 59 (1), e235.

Armstrong, P.J., Frederic, C.O. (2007). A mathematical representation of the multiaxial Bauschinger effect. Mater. High Temp. 24 (1), 1-26.

Banabic, D. (2010). Sheet Metal Forming Processes - Constitutive Modelling and Numerical Simulation. Berlin, Germany, Springer.

Besseling, J.F. (1958). A theory of plastic and creep deformations of an initially isotropic material Showing Anisotropic Strain-Hardening, Creep Recovery, and Secondary Creep. J. Appl. Mech. 25 (4), 529-536.

Burlet, H., Cailletaud, G. (1986). Numerical techniques for cyclic plasticity at variable temperature. Eng. Comput. 3 (2), 143-153.

Chaboche, J.L., Rousselier, G. (1983). On the plastic and viscoplastic constitutive equations - Part I: Rules developed with internal variable concept. J. Press. Vessel Technol. 105 (2), 153-158.

Çaylak, M., Akşen, T.A., Fırat, M. (2022). Evaluating the effectiveness of combined hardening models to determine the behavior of a plate with a hole under combined loadings. Eur. Mech. Sci. 6 (2), 97-104.

Dafalias, Y.F., Popov, E.F. (1976). Plastic internal variables formalism of cyclic plasticity. J. Appl. Mech. 43 (4), 645-651.

Dieter, G.E. (1988). Mechanical Metallurgy. SI metric ed. New York, USA, Mc-Graw Hill Book Company.

Firat, M. (2008). A numerical analysis of sheet metal formability for automotive stamping applications. Comput. Mater. Sci. 43 (4), 802-811.

Firat, M., Karadeniz, E., Yenice, M., Kaya, M. (2013). Improving the accuracy of stamping analyses including springback deformations. J. Mater. Eng. Perform. 22, 332-337.

Fu, B., Yang, W.Y., Wang, Y.D., Li, L.F., Sun, Z.Q., Ren, Y. (2014). Micromechanical behavior of TRIP-assisted multiphase steels studied with in situ high-energy X-ray diffraction. Acta Mater. 76, 342-354.

Fu, J., Barlat, F., Kim, J.H., Pierron, F. (2016). Identification of nonlinear kinematic hardening constitutive model parameters using the virtual fields method for advanced high strength steels. Int. J. Solids Struct. 102-103, 30 - 43.

Grassel, O., Krüger, L., Frommeyer, G., Meyer, L.W. (2000). High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development - properties - applications. Int. J. Plast. 16 (10-11), 1391-1409.

He, W., Meng, B., Song, B., Wan, M. (2022). Grain size effect on cyclic deformation behavior and springback prediction Ni-based superalloy foil. Trans. Nonferrous Metal. Soc. China 32 (4), 1188 - 1204.

Jacques, P.J., Delannay, F., Ladriere, J. (2001). On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels. Metal. Mater. Trans. A 32, 2759-2768.

Joo, G., Huh, H. (2017). Modeling of rate-dependent hardening behaviors of the TWIP980 steel sheet in tension and compression. Procedia Eng. 207, 143-148.

Joo, G., Huh, H. (2018). Rate-dependent isotropic-kinematic hardening model in tension-compression of TRIP and TWIP steel sheets. Int. J. Mech. Sci. 146-147, 432-444.

Keeler, S., Kimchi, M., Mooney, P.J. (2017). Advanced High-Strength Steels Application Guidelines. Version 6.0, World Auto Steel.

Koo, G.H., Lee, J.H. (2007). Investigation of ratcheting characteristics of modified 9Cr-1Mo steel by using the Chaboche constitutive model. Int. J. Press. Vessel Pip. 84 (5), 284-292.

Marc (2018a). Volume A: Theory and User Information.

Marc (2018b). Volume B: Element library

Meyer, K.A., Ekh, M., Ahlström, J. (2018). Modeling of kinematic hardening at large biaxial deformations in pearlitic steel. Int. J. Solids Struct. 130, 122-132.

Mróz, Z. (1967). On the description of anisotropic work hardening. J. Mech. Phys. Solids. 15 (3), 163-175.

Muransky, O., Sittner, P., Zrník, J., Oliver, E.C. (2008). In situ neutron diffraction investigation of the collaborative deformation-transformation mechanism in TRIP assisted steels at room and elevated temperatures. Acta Mater. 56 (14), 3367-3379.

Ohno, N., Wang, J.-D. (1993). Kinematic hardening rules with critical state of dynamic recovery. Part I: formulation and basic features for ratchetting behavior. Int. J. Plast. 9 (3), 375-390.

Pajand, M.R., Sinaie, S. (2009). On the calibration of Chaboche model and modified hardening rule for uniaxial ratcheting prediction. Int. J. Solids Struct. 46 (16), 3009-3017.

Paul, S.K., Sivaprasad, S., Dhar, S., Tarafder, M., Tarafder, S. (2010). Simulation of cyclic plastic deformation response in SA333 C-Mn steel by a kinematic hardening model. Comput. Mater. Sci. 48 (3), 662-671.

Prager, W. (1956). A new method of analyzing stresses and strains in work hardening plastic solids. ASME J. Appl. Mech. 23 (4), 493-496.

Prakash, A., Hochrainer, H., Reisacher, E., Riedel, H. (2008). Twinnig models in self-consistent texture simulations of TWIP steels. Steel Res. Int. 79 (8), 645-645.

Sapna, S., Tamilarasi, A., Kumar, M.P. (2012). Backpropagation learning algorithm based on Levenberg Marquardt algorithm. Comput. Sci. Inf. Technol., pp. 393-398.

Shan, T.K., Li, S.H., Zhang, W.G., Xu, Z.G. (2018). Prediction of martensitic transformation and deformation behavior in the TRIP steel sheet forming. Mater. Des. 29 (9), 1810-1816.

Skibicki, D., Pejkowski, L., Karolczuk, A., Seyda, J. (2022). Verification of the Tanaka non-proportional isotropic cyclic hardening model under asynchronous loading. Int. J. Solids Struct. 254-255, 111896.

Yıldız, H., Kırlı, O. (2004). Non-linear finite element modeling of deep drawing process. Pamukkale University J. Eng. Sci. 10 (3), 317-326.

Yu, K., Choi, H., Ha, J., Yoon, J.W. (2023). Bauschinger effect calibration by the different types of loading/reverse loading tests for springback prediction in sheet metal forming. Int. J. Mater. Form. 16, 16.

Zang, S.L., Guo, C., Thuillier, S., Lee, M.G. (2011). A model of one-surface cyclic plasticity and its application to springback prediction. Int. J. Mech. Sci. 53 (6), 425-435.

Ziegler, H.A. (1959). A modification of Prager’s hardening rule. Q. Appl. Math. 17 (1), 55-65.



How to Cite

Arda Akşen, T., Esener, E., & Firat, M. (2023). Characterizing the mechanical deformation response of AHSS steels: A comparative study of cyclic plasticity models under monotonic and reversal loading. Revista De Metalurgia, 59(4), e251.