Caracterización de la respuesta por deformación mecánica de los aceros AHSS: Un estudio comparativo de modelos de plasticidad cíclica bajo carga monotónica e inversa

Autores/as

DOI:

https://doi.org/10.3989/revmetalm.251

Palabras clave:

Aceros avanzados de alta resistencia, Endurecimiento cinemático, Modelización por elementos finitos, Plasticidad cíclica, TRIP, TWIP

Resumen


Este estudio evalúa el rendimiento de un método de modelado de endurecimiento combinado definido por el usuario para aceros avanzados de alta resistencia (AHSS) bajo condiciones de carga monotónica e inversa. Se investiga el comportamiento plástico de las chapas de AHSS TWIP980 y TRIP980 utilizando un enfoque de modelado de plasticidad cíclica. El modelo incorpora un criterio de fluencia de von Mises isotrópico y una regla de endurecimiento cinemático no lineal de Chaboche de un solo término. Se predicen curvas de tensión-deformación monotónicas y de carga inversa y se comparan con resultados experimentales. El modelo capta con precisión el efecto Bauschinger para ambos materiales, pero necesita ayuda para modelizar eficazmente el comportamiento de ablandamiento permanente observado en el acero TWIP980. En general, el método de modelización propuesto concuerda bien con los resultados experimentales para la carga monótona y representa con precisión el efecto Bauschinger y el comportamiento transitorio durante la carga inversa. Sin embargo, son necesarias mejoras para captar el comportamiento de ablandamiento permanente del acero TWIP980.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Akşen, T.A., Firat, M. (2023). Effect of the yield surface evolution on the earing defect prediction. Rev. Metal. 59 (1), e235. https://doi.org/10.3989/revmetalm.235

Armstrong, P.J., Frederic, C.O. (2007). A mathematical representation of the multiaxial Bauschinger effect. Mater. High Temp. 24 (1), 1-26. https://doi.org/10.3184/096034007X207589

Banabic, D. (2010). Sheet Metal Forming Processes - Constitutive Modelling and Numerical Simulation. Berlin, Germany, Springer. https://doi.org/10.1007/978-3-540-88113-1

Besseling, J.F. (1958). A theory of plastic and creep deformations of an initially isotropic material Showing Anisotropic Strain-Hardening, Creep Recovery, and Secondary Creep. J. Appl. Mech. 25 (4), 529-536. https://doi.org/10.1115/1.4011867

Burlet, H., Cailletaud, G. (1986). Numerical techniques for cyclic plasticity at variable temperature. Eng. Comput. 3 (2), 143-153. https://doi.org/10.1108/eb023652

Chaboche, J.L., Rousselier, G. (1983). On the plastic and viscoplastic constitutive equations - Part I: Rules developed with internal variable concept. J. Press. Vessel Technol. 105 (2), 153-158. https://doi.org/10.1115/1.3264257

Çaylak, M., Akşen, T.A., Fırat, M. (2022). Evaluating the effectiveness of combined hardening models to determine the behavior of a plate with a hole under combined loadings. Eur. Mech. Sci. 6 (2), 97-104. https://doi.org/10.26701/ems.1051057

Dafalias, Y.F., Popov, E.F. (1976). Plastic internal variables formalism of cyclic plasticity. J. Appl. Mech. 43 (4), 645-651. https://doi.org/10.1115/1.3423948

Dieter, G.E. (1988). Mechanical Metallurgy. SI metric ed. New York, USA, Mc-Graw Hill Book Company.

Firat, M. (2008). A numerical analysis of sheet metal formability for automotive stamping applications. Comput. Mater. Sci. 43 (4), 802-811. https://doi.org/10.1016/j.commatsci.2008.01.068

Firat, M., Karadeniz, E., Yenice, M., Kaya, M. (2013). Improving the accuracy of stamping analyses including springback deformations. J. Mater. Eng. Perform. 22, 332-337. https://doi.org/10.1007/s11665-012-0257-5

Fu, B., Yang, W.Y., Wang, Y.D., Li, L.F., Sun, Z.Q., Ren, Y. (2014). Micromechanical behavior of TRIP-assisted multiphase steels studied with in situ high-energy X-ray diffraction. Acta Mater. 76, 342-354. https://doi.org/10.1016/j.actamat.2014.05.029

Fu, J., Barlat, F., Kim, J.H., Pierron, F. (2016). Identification of nonlinear kinematic hardening constitutive model parameters using the virtual fields method for advanced high strength steels. Int. J. Solids Struct. 102-103, 30 - 43. https://doi.org/10.1016/j.ijsolstr.2016.10.020

Grassel, O., Krüger, L., Frommeyer, G., Meyer, L.W. (2000). High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development - properties - applications. Int. J. Plast. 16 (10-11), 1391-1409. https://doi.org/10.1016/S0749-6419(00)00015-2

He, W., Meng, B., Song, B., Wan, M. (2022). Grain size effect on cyclic deformation behavior and springback prediction Ni-based superalloy foil. Trans. Nonferrous Metal. Soc. China 32 (4), 1188 - 1204. https://doi.org/10.1016/S1003-6326(22)65866-7

Jacques, P.J., Delannay, F., Ladriere, J. (2001). On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels. Metal. Mater. Trans. A 32, 2759-2768. https://doi.org/10.1007/s11661-001-1027-4

Joo, G., Huh, H. (2017). Modeling of rate-dependent hardening behaviors of the TWIP980 steel sheet in tension and compression. Procedia Eng. 207, 143-148. https://doi.org/10.1016/j.proeng.2017.10.752

Joo, G., Huh, H. (2018). Rate-dependent isotropic-kinematic hardening model in tension-compression of TRIP and TWIP steel sheets. Int. J. Mech. Sci. 146-147, 432-444. https://doi.org/10.1016/j.ijmecsci.2017.08.055

Keeler, S., Kimchi, M., Mooney, P.J. (2017). Advanced High-Strength Steels Application Guidelines. Version 6.0, World Auto Steel. https://www.worldautosteel.org/download_files/AHSS%20Guidelines%20V6/00_AHSSGuidelines_V6_20170430.pdf

Koo, G.H., Lee, J.H. (2007). Investigation of ratcheting characteristics of modified 9Cr-1Mo steel by using the Chaboche constitutive model. Int. J. Press. Vessel Pip. 84 (5), 284-292. https://doi.org/10.1016/j.ijpvp.2006.12.002

Marc (2018a). Volume A: Theory and User Information.

Marc (2018b). Volume B: Element library

Meyer, K.A., Ekh, M., Ahlström, J. (2018). Modeling of kinematic hardening at large biaxial deformations in pearlitic steel. Int. J. Solids Struct. 130, 122-132. https://doi.org/10.1016/j.ijsolstr.2017.10.007

Mróz, Z. (1967). On the description of anisotropic work hardening. J. Mech. Phys. Solids. 15 (3), 163-175. https://doi.org/10.1016/0022-5096(67)90030-0

Muransky, O., Sittner, P., Zrník, J., Oliver, E.C. (2008). In situ neutron diffraction investigation of the collaborative deformation-transformation mechanism in TRIP assisted steels at room and elevated temperatures. Acta Mater. 56 (14), 3367-3379. https://doi.org/10.1016/j.actamat.2008.03.026

Ohno, N., Wang, J.-D. (1993). Kinematic hardening rules with critical state of dynamic recovery. Part I: formulation and basic features for ratchetting behavior. Int. J. Plast. 9 (3), 375-390. https://doi.org/10.1016/0749-6419(93)90042-O

Pajand, M.R., Sinaie, S. (2009). On the calibration of Chaboche model and modified hardening rule for uniaxial ratcheting prediction. Int. J. Solids Struct. 46 (16), 3009-3017. https://doi.org/10.1016/j.ijsolstr.2009.04.002

Paul, S.K., Sivaprasad, S., Dhar, S., Tarafder, M., Tarafder, S. (2010). Simulation of cyclic plastic deformation response in SA333 C-Mn steel by a kinematic hardening model. Comput. Mater. Sci. 48 (3), 662-671. https://doi.org/10.1016/j.commatsci.2010.02.037

Prager, W. (1956). A new method of analyzing stresses and strains in work hardening plastic solids. ASME J. Appl. Mech. 23 (4), 493-496. https://doi.org/10.1115/1.4011389

Prakash, A., Hochrainer, H., Reisacher, E., Riedel, H. (2008). Twinnig models in self-consistent texture simulations of TWIP steels. Steel Res. Int. 79 (8), 645-645. https://doi.org/10.1002/srin.200806178

Sapna, S., Tamilarasi, A., Kumar, M.P. (2012). Backpropagation learning algorithm based on Levenberg Marquardt algorithm. Comput. Sci. Inf. Technol., pp. 393-398. https://doi.org/10.5121/csit.2012.2438

Shan, T.K., Li, S.H., Zhang, W.G., Xu, Z.G. (2018). Prediction of martensitic transformation and deformation behavior in the TRIP steel sheet forming. Mater. Des. 29 (9), 1810-1816. https://doi.org/10.1016/j.matdes.2008.03.023

Skibicki, D., Pejkowski, L., Karolczuk, A., Seyda, J. (2022). Verification of the Tanaka non-proportional isotropic cyclic hardening model under asynchronous loading. Int. J. Solids Struct. 254-255, 111896. https://doi.org/10.1016/j.ijsolstr.2022.111896

Yıldız, H., Kırlı, O. (2004). Non-linear finite element modeling of deep drawing process. Pamukkale University J. Eng. Sci. 10 (3), 317-326.

Yu, K., Choi, H., Ha, J., Yoon, J.W. (2023). Bauschinger effect calibration by the different types of loading/reverse loading tests for springback prediction in sheet metal forming. Int. J. Mater. Form. 16, 16. https://doi.org/10.1007/s12289-023-01738-3

Zang, S.L., Guo, C., Thuillier, S., Lee, M.G. (2011). A model of one-surface cyclic plasticity and its application to springback prediction. Int. J. Mech. Sci. 53 (6), 425-435. https://doi.org/10.1016/j.ijmecsci.2011.03.005

Ziegler, H.A. (1959). A modification of Prager's hardening rule. Q. Appl. Math. 17 (1), 55-65. https://doi.org/10.1090/qam/104405

Publicado

2023-12-30

Cómo citar

Arda Akşen, T., Esener, E., & Firat, M. (2023). Caracterización de la respuesta por deformación mecánica de los aceros AHSS: Un estudio comparativo de modelos de plasticidad cíclica bajo carga monotónica e inversa. Revista De Metalurgia, 59(4), e251. https://doi.org/10.3989/revmetalm.251

Número

Sección

Artículos