Copper recovery from slag by indirect bioleaching

Authors

  • A. Mazuelos Departamento de Ingeniería Química de la Universidad de Sevilla
  • N. Iglesias Departamento de Ingeniería Química de la Universidad de Sevilla
  • R. Romero Departamento de Ingeniería Mecánica, Universidad de Chile
  • O. Forcat Departamento de Ingeniería Química de la Universidad de Sevilla
  • F. Carranza Departamento de Ingeniería Química de la Universidad de Sevilla

DOI:

https://doi.org/10.3989/revmetalm.0828

Keywords:

Copper-slag, Indirect bioleaching, BRISA process, Ferric leaching, Copper sulphides

Abstract


The main source of copper loss from a smelter is copper in discard slag. Slag can contain Cu in concentrations very much higher than those of many ores. Cu is present in slag entrained in very small drops of matte, white metal and blister copper occluded in fayalitic phase. In this work, the technical viability of the BRISA process, that is based on the indirect bioleaching, for this residue has been proved. A sample of slag, containing 2 % of copper, has been chemical, granulometrical and metallographic characterized and it has been leached with ferric sulphate solutions in agitated reactors. The influence of several variables have been investigated. Once the best operating conditions had been selecting and an economic estimation had been done (with very really attractive results), the leaching stage has been designed for a plant of 30 tonnes per hour capacity. Cu extractions higher than 70% can be achieved with a residence time of only five hours. Despite of Cu(II) concentration in fed is as high as 30 g/l, biooxidation stage can supply Fe(III) demanded by ferric leaching stage.

Downloads

Download data is not yet available.

References

[1] W.G. Davenport, M. King, M. Schlesinger y A.K. Biswas, Extractive metallurgy of copper, 4th edition, Elsevier Science Ltd., Oxford, Inglaterra, 2002.

[2] G. Rao y V. Nayak, J. Mines. Met. Fuels 40 (1992) 131.

[3] S. Anand, P. Rao, X. Kanta y P.K. Jena, Hydrome tallurgy 5 (1980) 355-365. doi:10.1016/0304-386X(80)90025-0

[4] S. Anand, P. Rao y P.K. Jena, Hydrometallurgy 10 (1983) 305-312. doi:10.1016/0304-386X(83)90061-0

[5] O. Herreros, R. Quiroz, E. Manzano, C. Bou y J. Viñals, Hydrometallurgy 49 (1998) 87-101. doi:10.1016/S0304-386X(98)00010-3

[6] O. Herreros, N. Bernal, R. Quiroz, G. Fuentes y J. Viñals, Rev. Metal. Madrid 41 (2005) 384- 392.

[7] S. Basir y M.A. Rabah, Hydrometallurgy 53 (1999) 31-44. doi:10.1016/S0304-386X(99)00030-4

[8] A.N. Banza, E. Gock y K. Kongolo, 67 (2002) 63-69.

[9] I. Palencia, R. Romero, A. Mazuelos y F. Carranza, Hydrometallurgy 66 (2002) 85-93. doi:10.1016/S0304-386X(02)00095-6

[10] F. Carranza, A. Mazuelos y R. Romero, Rev. Metal. Madrid 29 (2003) 401-480.

[11] R. Romero, A. Mazuelos, I. Palencia y F. Carranza, Hydrometallurgy 70 (2003) 205-215. doi:10.1016/S0304-386X(03)00081-1

[12] F. Carranza, N. Iglesias, A. Mazuelos, I. Palencia y R. Romero, Hydrometallurgy 71 (2004) 413- 420. doi:10.1016/S0304-386X(03)00119-1

[13] A. Mazuelos, F. Carranza, I. Palencia y R. Romero, Hydrometallurgy 58 (2000) 269-275. doi:10.1016/S0304-386X(00)00141-9

[14] A. Mazuelos, I. Palencia, R. Romero, G. Rodríguez y F. Carranza, Miner. Eng 14 (2001) 507-514. doi:10.1016/S0892-6875(01)00038-3

[15] M. Mesa, J.A. Andrades, M. Macias y D. Cantero, J. Chem. Technol. Biot. 79 (2004) 163- 170. doi:10.1002/jctb.956

[16] G.D. Leduc, G.D. Ferroni y J.T. Trevors, World J. Microb. Biot. 13 (1997) 435-455.

[17] H.S. Fogler, Elements of chemical reaction engineering. Third edition. 1999. Prentice-Hall Inc.

Downloads

Published

2009-06-30

How to Cite

Mazuelos, A., Iglesias, N., Romero, R., Forcat, O., & Carranza, F. (2009). Copper recovery from slag by indirect bioleaching. Revista De Metalurgia, 45(3), 191–206. https://doi.org/10.3989/revmetalm.0828

Issue

Section

Articles