Criteria for prediction of plastic instabilities for hot working processes. (Part I: Theoretical review)


  • A. Al Omar Departamento de Ingeniería Mecánica, EPSEM, Universidad Politécnica de Cataluña
  • J. M. Prado Centro Tecnológico de Manresa



Hot working, Plastic instabilities criteria, Dynamic material model, Flow localization


Hot working processes often induce high levels of deformation at high strain rates, and impose very complex multiaxial modes of solicitation. These processes are essentially limited by apparition and development of plastic instabilities. These may be the direct cause of rapid crack propagation, which lead to a possible final rupture. The complexity of deformation modes and the simultaneous intervention of several parameters have led many researchers to develop various criteria, with different approaches, to predict the occurrence of defects and to optimize process control parameters. The aim of the present paper is to summarize the general characteristics of some instability criteria, widely used in the literature, for the prediction of plastic instabilities during hot working. It was considered appropriate to divide the work into two parts: part I presents the phenomenological criteria for the prediction of plastic instabilities, based on descriptive observation of microscopic phenomena of the deformation (strain hardening and strain rate sensitivity), and discusses the continuum criteria based on the principle of maximum rate of entropy production of irreversible thermodynamics applied to continuum mechanics of large plastic flow. Also, this part provides a bibliographical discussion among several authors with regard to the physical foundations of dynamic materials model. In part II, of the work, a comparative study has been carried out to characterize the flow instability during a hot working process of a medium carbon microalloyed using phenomenological and continuum criteria.


Download data is not yet available.


[1] J.J. Jonas, C.M. Sellars y W.J. McG. Tegart, Metall. Rev. 14 (1969) 1-12.

[2] P.W. Lee y H.A. Kuhn, Metall. Trans. A 4 (1973) 969-974. doi:10.1007/BF02645597

[3] R. Raj, Metall.Trans. A 12 (1981) 1.089-1.097.

[4] H.J. Frost y M.F. Ashby, Deformation-mechanism maps, caps. 1-5, Ed. Pergamon Press, Oxford, Inglaterra, 1982.

[5] Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark y D.R. Barker, Metall.Trans. A 15 (1984) 1.883-1.892.

[6] G.E. Dieter, Metals Handbook, ASM, Metals Park, Ohio, 14A (1987) 363-387.

[7] Y.V.R.K. Prasad, Ind. J. Technol. 28 (1990) 435- 451.

[8] Y.V.R.K. Prasad y N. Ravichandran, Bull. Mater. Sci. 14 (1991) 1.241-1.248.

[9] Y.V.R.K. Prasad y S. Sasidhara, Hot Working Guide: A Compendium of Processing Maps, ASM International, Materials Park, Ohio, 1997. [10] Y.V.R.K. Prasad y T. Seshacharyulu, Int. Mater. Rev. 43 (1998) 243-258.

[11] S.V.S. Narayana, B. Nageswara y B.P. Kash, Int. Mater. Rev. 45 (2000) 15-26. doi:10.1179/095066000771048782

[12] A. Al Omar y J.M. Prado, Rev. Metal. Madrid 33 (1997) 89-100.

[13] I. Rieiro, A. Fernández, A. Martínez y M. Carsí, Rev. Metal. Madrid 34 (1998) 355-366.

[14] M. Carsí, R. Allende, F. Peñalba, J.A. Jiménez y O.A. Ruano, Steel Res.Int. 75 (2004) 26-32.

[15] I. Rieiro, M. Cars› y O.A. Ruano, Mater. Sci. Technol. 25 (2009) 995-1.002.

[16] S.L. Semiatin y J.J. Jonas, Formability and Workability of Metals: Plastic Instability and Flow Localization, ASM, Metals Park, Ohio, 1984.

[17] R.C. Batra y C.H. Kim, Int. J. Plast. 8 (1992) 425-452.

[18] S. L. Semiatin, G.D. Lahoti, y S.I. Oh, Material Behavior Under High Stress and Ultra high Loading Rates, 29th Sagamore Army Mater. Res. Conf. Proc., Ed. J. Mescall y V. Weiss, Plenum Press, Nueva York, EE.UU., 1982, pp. 119-159.

[19] A. J. Bedford, A. L. Wingrove y K. R. L. Thompson, J. Aust. Inst. Met. 19 (1974) 61-73. [20] G.B. Olsen, J.F. Mescall y M. Azrin, Shock Waves and High strain Rate Phenomena in Metals, Ed. M.A. Meyers y L.E. Murr, Plenum Press, Nueva York, EE.UU., 1980, pp. 221-247.

[21] H.C. Rogers, Ann. Rev. Mater. Sci. 9 (1979) 283-311. doi:10.1146/

[22] Y. Liu, R. Hu, J. Li, H. Kou, H. Li, H. Chang y H. Fu, Mater. Sci. Eng. A 508 (2009) 141-147.

[23] L.J. Huang, L. Geng, A.B. Li, X.P. Cui, H.Z. Li y G.S. Wang, Mater. Sci. Eng. A 505 (2009) 136-143.

[24] Z. Marciniak y K. Kuczynski, Int. J. Mech. Sci. 9 (1967) 609-620. doi:10.1016/0020-7403(67)90066-5

[25] Z. Marciniak, K. Kuczynski y T. Pokora, Int. J. Mech. Sci. 15 (1973) 789-805. doi:10.1016/0020-7403(73)90068-4

[26] J. J. Jonas, R. A. Holt y C.E. Coleman, Acta Metall. 24 (1976) 911 -918. doi:10.1016/0001-6160(76)90039-0

[27] J.J. Jonas y B. Baudelet, Acta Metall. 25 (1977) 4350. doi:10.1016/0001-6160(77)90244-9

[28] D. Campbell, J. Mech. Phys. Solids 15 (1967) 359-370. doi:10.1016/0022-5096(67)90008-7

[29] A.S. Argon Avery, The inhomogeneity of plastic deformation, ASM International, Materials Park, Ohio, 1973.

[30] A. Considère, Ann. Ponts Chaussées 9 (1885) 574-575.

[31] W.A. Backofen, I.R. Turner y D.H. Avery, Trans. ASM 57 (1964) 980-990.

[32] E.W. Hart, Acta Metall. 15 (1967) 351-355. [33] S.L. Semiatin y G. D. Lahoti, Metall. Trans. A 12 (1981) 1.705-1.717.

[34] M. Aghaie-Khafri y N. Golarzi, Mater. Sc. Eng. A 486 (2008) 641-647. doi:10.1016/j.msea.2007.11.059

[35] S.L. Semiatin y G.D. Lahoti, Metall. Trans. A 13 (1982) 275-288.

[36] A.R. Salehi, S. Serajzadeh y N. Yazdipour, Mater. Chem. Phys. 101(2007) 153-157 doi:10.1016/j.matchemphys.2006.03.012

[37] H.L. Gegel, J.C. Malas, S.M. Doraivelu y V.A. Shende, Metals Handbook vol. 14, ASM, Metals Park, 1987, pp. 417-438.

[38] H.L. Gegel, J.C. Malas, S.M. Doraivelu, J.M Alexander y J.S. Gunasekera, Proc. Adv. Technol. Plasticity, vol. 11, Ed. K. Lange, Springer-Verlag, Londres, Inglaterra, 1987, pp. 1.243-1.249.

[39] J.M. Alexander, Modelling of hot deformation of steels, Ed. J.G. Lenard, Springer-Verlag, Berlin, Alemania, 1989, pp. 101-115.

[40] H. Ziegler, Progress in solid mechanica, vol. 4, Ed. I.N. Sneddon y R. Hill, Nueva York, EE. UU., 1963, pp. 93-193.

[41] P.E. Wellstead, Introduction to Pysical Systems Modelling, Ed. Academic Press, Londres, Inglaterra, 1979.

[42] I. Prigogene, Science 201 (1978) 777-787. [43] D. Cai, L. Xiong, W. Liu, G. Sun y M. Yao, Mater. Des. 30 (2009) 921-925.

[44] L.J. Huang, L. Geng, A.B. Li, X.P. Cui, H.Z. Li y G.S. Wang, Mater. Sci. Eng. A 505 (2009) 136-143. doi:10.1016/j.msea.2008.12.041

[45] J. Luo, M. Li, H. Li y W. Yu, Mater. Sci. Eng. A 505 (2009) 88-95. doi:10.1016/j.msea.2008.11.001

[46] J. Luo, M. Li, W. Yu y H. Li, Mater. Sci. Eng. A 504 (2009) 90-98. doi:10.1016/j.msea.2008.10.020

[47] M.Q. Li y W.F. Zhang, Mater. Sci. Eng. A 502 (2009) 32-37. doi:10.1016/j.msea.2008.11.031

[48] Y.V.R.K. Prasad, K.P. Rao, N. Hort y K.U. Kainer, Mater. Sci. Eng. A 502 (2009) 25-31.

[49] F. Bakkali El Hassani, A. Chenaoui, R. Dkiouak, L. Elbakkali y A. Al Omar, J. Mater. Process. Technol. 199 (2008)140-149.

[50] A. Al Omar, Tesis Doctoral, Univ. Politécnica de Cataluña, 1996.

[51] A. Al Omar, J.M. Cabrera Y J.M. Prado, Scr. Mater.34 (1996) 1303-1308.

[52] A. Al Omar, J.M. Cabrera Y J.M. Prado, Rev. Metal. Madrid 33 (1997) 153-160

[53] I. Prigogene, Science 201 (1978) 777-787. [54] C. Basaran y S. Nie, Int. J. Damage Mech. 13 (2004) 205-223.

[55] L.E. Malvern, Introduction to the Mechanics of Continuum Medium, Ed. Prentice-Hall, New Jersey, EE. UU., 1969.

[56] J. Lasalla y L. Solomon, Stability by Liapunov’s direct method, Ed. Academica Press. Boston, EE. UU., 1987.

[57] D.L. Schultz y J.L. Melsa, State Functions and Linear Control Systems, Ed. McGraw-Hill, 1967.

[58] H.L. Gegel, Computer simulation in material science, Ed. R.J. Arsenault et al., ASM, Metals Park, vol. 14, 1987, pp. 291-344.

[59] A.K.S. Kalyan, MS Thesis, Indian Institute of Science, Bangalore, India, 1987.

[60] T. Rajagopalachary y V.V. Kutumbarao, Scr. Mater. 35 (1996) 311-316. doi:10.1016/1359-6462(96)00135-2

[61] V.V. Kutumbarao y T. Rajagopalachary, Bull. Mater. Sci. 19 (1996) 677-698. doi:10.1007/BF02745160

[62] R. Hill, J. Mech. Phys. Solids 35 (1987) 23-33. [63] S.V.S. Narayana y B. Nageswara, Bull. Mater. Sci. 22 (1999) 9-10.

[64] F. Montheillet, J. J. Jonas y K.W. Neale, Metall. Trans. A 27 (1996) 232-235. doi:10.1007/BF02647764

[65] Y.V.R.K. Prasad, Metall. Trans. A 27 (1996) 235-236. doi:10.1007/BF02647765

[66] Y.V.R.K. Prasad, J. Mater. Eng. Performance 12 (2003) 638-345. doi:10.1361/105994903322692420

[67] H. Ziegler, Thermomechanics, 2nd ed., Ámsterdam, Holanda, 1983.

[68] S.V.S. Narayana, M.S. Sarma y B. Nageswara, Metall. Trans. A 28(1997) 1.581-1.582.

[69] E.S. Puchi y M.H. Staia, Metall. Trans. A 26, (1995) 2.895-2.910.

[70] E.S. Puchi y M.H. Staia, Metall. Trans. A 29 (1998) 2.345-2.359.

[71] S. Ghosh, Metall. Trans. A 31 (2000) 2.973- 2.974.

[72] S. Ghosh, Metall. Trans. A 33 (2002) 1.569- 1.572.

[73] C. Poletti, H.P. Degischer, S. Kremmer y W. Marketz, Mater. Sci. Eng. A 486 (2008) 127- 137. doi:10.1016/j.msea.2007.08.077

[74] C. Poletti, H. Dieringa y F. Warchomicka, Mater. Sci. Eng. A 516 (2008) 138-147. doi:10.1016/j.msea.2009.03.007

[75] J. Liu, Z. Cui y C. Li, J. Mater. Process. Technol. 205 (2008) 497-505 doi:10.1016/j.jmatprotec.2007.11.308

[76] G. Meng, B. Li, H. Li, H. Huang y Z. Nie, Mater. Sci. Eng. A 517 (2009) 132-137. doi:10.1016/j.msea.2009.03.068

[77] J.M. Cabrera, A. Al Omar y J.M. Prado, Rev. Metal. Madrid 33 (1997) 215-228.

[78] J.M. Cabrera, A. Al Omar, J.J. Jonas y J.M. Prado, Metall. Trans. A 28 (1997) 2.233-2.244.

[79] A. Al Omar, J.M. Cabrera y J.M. Prado, Rev. Métall. 5 (1998) 589-597

[80] S.V.S. Narayana, B. Nageswara y B.P. Kashyap, J. Mater. Process. Technol. 166 (2005) 268-278.

[81] S.V.S. Narayana, B. Nageswara y B.P. Kashyap, J. Mater. Process. Technol. 166 (2005) 279-285.

[82] S.V.S. Narayana, B. Nageswara y B.P. Kashyap, Compos. Sci. Technol. 63 (2003) 119-135.

[83] S.V.S. Narayana y B. Nageswara, J. Mater. Sci. Lett. 18 (1999) 1.757-1758.




How to Cite

Al Omar, A., & Prado, J. M. (2010). Criteria for prediction of plastic instabilities for hot working processes. (Part I: Theoretical review). Revista De Metalurgia, 46(2), 143–161.




Most read articles by the same author(s)

1 2 > >>