Production and processing of ultra-fine grained, nanostructured and amorphous alloys by mechanical alloying

Authors

  • J. Cintas Grupo de Metalurgia e Ingeniería de los Materiales, Escuela Técnica Superior de Ingenieros
  • F. G. Cuevas Grupo de Metalurgia e Ingeniería de los Materiales, Escuela Técnica Superior de Ingenieros
  • J. M. Montes Grupo de Metalurgia e Ingeniería de los Materiales, Escuela Técnica Superior de Ingenieros
  • J. A. Rodríguez Grupo de Metalurgia e Ingeniería de los Materiales, Escuela Técnica Superior de Ingenieros
  • P. Urban Grupo de Metalurgia e Ingeniería de los Materiales, Escuela Técnica Superior de Ingenieros
  • J. M. Gallardo Grupo de Metalurgia e Ingeniería de los Materiales, Escuela Técnica Superior de Ingenieros

DOI:

https://doi.org/10.3989/revmetalm.2007.v43.i3.65

Keywords:

Mechanical alloying, Nanostructure, Amorphous alloys, Electrical resistance sintering

Abstract


Several consolidation procedures have been developed during the last fifteen years to process mechanically alloyed (MA) powders at the Metallurgy and Materials Engineering Group (University of Seville). MA powders were processed by conventional cold pressing and vacuum sintering. In addition, several densification promoters were used. The resulting parts, with second phases precipitated during the consolidation, showed good tensile strength, both at room and high temperature. Nowadays, nanostructured and amorphous MA alloys are being processed by electrical resistance sintering (ERS), which prevents microstructure evolution during consolidation.

Downloads

Download data is not yet available.

References

[1] B.Q. Han, Z. Zhang y E.J. Lavernia, Phil. Mag. Lett. 85 (2005) 97-108. doi:10.1080/09500830500153701

[2] L.L. Shaw, JOM 52 (2000) 41-45. doi:10.1007/s11837-000-0068-2

[3] X.K. Sun, H.T. Cong, M. Sun y M.C. Yang, Metall. Mater. Trans. A 31 (2000) 1.017-1.024.

[4]C. Suryanarayana, JOM 54 (2002) 24-27. doi:10.1007/BF02709088

[5] R. Valiev, Nat. Mater. 3 (2004) 511-516. doi:10.1038/nmat1180

PMid:15286754

[6] Y. Zou, S. Saji y K. Kusabiraki, J. Mater. Sci. Lett. 20 (2001) 2.039-2.041.

[7] A.P. Tsai, T. Kamiyama, y. Kawamura, A. Inoue y T. Masumoto, Acta Mater. 45 (1997) 1.477-1.487.

[8] R.I. Wu, G. Wilde y J.H. Perepezko, Mater. Sci. Eng. 301 (2001) 12-17. doi:10.1016/S0921-5093(00)01390-3

[9] N. Bassim, C.S. Kiminami y M.J. Kaufman, J. Non-Cryst. Solids 273 (2000) 271-276. doi:10.1016/S0022-3093(00)00135-6

[10] A. Inoue, Nanostruct. Mater. 6 (1995) 53-64. doi:10.1016/0965-9773(95)00029-1

[11] L. Wang, L. Ma, H. Kimura y A. Inoue, Mater. Lett. 52 (2002) 47-52. doi:10.1016/S0167-577X(01)00364-0

[12] D.V. Louzguine, A.R. yavari y A. Inoue, J. Non-Cryst. Solids 316 (2003) 255-260. doi:10.1016/S0022-3093(02)01602-2

[13] M. Gögebakan y O. Uzun, J. Materials Proc. Tech. 153-154 (2004) 829-832. doi:10.1016/j.jmatprotec.2004.04.012

[14] Á. Révész, G. Heunen, L.K. Varga, S. Suriñach y M.D. Baró, J. Alloys Compd. 368 (2004) 164-168. doi:10.1016/j.jallcom.2003.07.021

[15] F.V. Lenel, J. Metals 7 (1955) 158-167.

[16] J.R. Groza y A. Zavaliangos, Mater. Sci. Eng., A287 (2000) 171-177. doi:10.1016/S0921-5093(00)00771-1

[17] J.A. Rodríguez, Tesis Doctoral, Universidad de Sevilla, 1992.

[18] P.S. Gilman, Tesis Doctoral, Stanford University, 1979.

[19] V. Arnhold y J. Baumgartem, Powder Met. Int. 17 (1985) 168.

[20] J. Cintas, J.A. Rodriguez, J.M. Gallardo y E.J. Herrera, Rev. Metal. Madrid 37 (2001) 370-375.

[21] S. Fujikawa, K. Hirano y y. Fukushima, Met. Trans. 9A (1978) 1.811.

[22] H. Meher, Numerical data and functional relationships in science and technology, III/26, Springer, Berlin, Alemania, 1991.

[23] N.S. Timofeev y A.P. Savitskii.- Sov. Powder Metall. Met. Ceram. 29 (1990) 188. doi:10.1007/BF00797958

[24] W. Kehl y H.F. Fischmeinster.- Powder Metall. 3 (1980) 113.

[25] A. Kimura, M Shibata, K. Kondoh, y. Takeda, M. Katayama, T. Kanie And H. Takada, Appl. Phys. Lett. 70 (1997) 3.615.

[26] J.J. Fuentes, J.A. Rodríguez And E.J. Herrera, Anal. Mec. Fractura 20 (2003) 296-301.

[27] T. Itsukaichi, K. Masuyama, M. Umemoto, I. Okane y J.G. Cabañas-Moreno, J. Mater. Res 8 (1993) 1817-1828. doi:10.1557/JMR.1993.1817

[28] M. Miki, T. yamasaki y y.Ogino, Mater. Sci. Forum 179-181 (1995) 307-312.

[29] F.G. Cuevas, J.M. Montes, J. Cintas y J.M. Gallardo, Powder Metallurgy 48 (2005) 365-370. doi:10.1179/174329005X78121

[30] F.G. Cuevas, J.M. Montes, J. Cintas y J.M. Gallardo, Rev. Metal. Madrid Vol. Extr. (2005) 83-88.

[31] R.A. young, The Rietveld Method, Ed. International Union of Crystallography, Oxford University Press, Oxford, Reino Unido, 1993.

[32] J. Cintas, F.G. Cuevas, J.M. Montes y E.J. Herrera, Scripta Mater. 53 (2005) 1.165-1.170.

[33] J. Cintas, J.M. Montes, F.G. Cuevas y J.M. Gallardo, Mater Sci. Forum. 514-516 (2005) 1.279-1.283.

[34] E.M. Gutman, Mechanochemistry of materials, Ed. Cambridge International Science Publishing, England, 1998. [ 35] S.J. Hong y C. Suryan Arayana, J Appl. Phys. 96 (2004) 6.120-6.126.

[36] M. Naranjo, J.A. Rodríguez y E.J. Herrera, Scripta Mater. 49 (2003) 65-69. doi:10.1016/S1359-6462(03)00179-9

[37] Metals Handbook, Vol 2, Properties and selection.- Nonferrous alloys and special-purpose materials Ed. ASM, USA, 1995, pp. 25 y 56.

[38] E.J. Herrera, J. Cintas y J.A. Rodríguez, Nitruration of powders by reactive milling in the presence of some nitrogen compounds, Patente P2003-01963, 2003.

[39] J. Cintas, E.J. Herrera y J.A. Rodríguez, Manufacturing of aluminium-based composite materials by mechanosynthesis and hot consolidation, Patente P2003-01964, 2003.

[40] J.M. Montes, Tesis Doctoral, UNED/Universidad de Sevilla, Junio 2004.

[41] J.M. Montes, J.A. Rodríguez y E.J. Herrera, Rev. Metal. Madrid 39 (2003) 99-106.

[42] J.M. Montes, J. Cintas, F.G. Cuevas y J.A. Rodríguez, Euro PM2004 2 (2004) 259-264.

[43] J.M. Montes, J. Cintas, F.G. Cuevas y J.A. Rodríguez, Mater. Sci. Forum 514-516 (2006) 1.225-1.229.

[44] J.M. Montes, F.G. Cuevas, J. Cintas, J.A. Rodríguez y E.J. Herrera, The equivalent simple Cubic System (in Trends in Materials Science), Nova Science Ed, EEUU 2005, pp. 157-190.

[45] J.M. Montes, F.G. Cuevas y J. Cintas, Materials Science and Engineering A 395 (2005) 208-213. doi:10.1016/j.msea.2004.12.023

[46] J.M. Montes, F.G. Cuevas y J. Cintas, Enviado a Journal of Materials Science.

[47] J.M. Montes, F.G. Cuevas y J. Cintas, Computacional Mater. Sci. 36 (2006) 329-337.

[48] J.M. Montes, J.A. Rodríguez y E.J. Herrera, Powder Metall. 46 (2003) 251-256. doi:10.1179/003258903225008544

[49] J.M. Montes, F.G. Cuevas, J.A. Rodríguez y E.J. Herrera, Powder Metall. 48 (2005) 343-344. doi:10.1179/174329005X66854

Downloads

Published

2007-06-30

How to Cite

Cintas, J., Cuevas, F. G., Montes, J. M., Rodríguez, J. A., Urban, P., & Gallardo, J. M. (2007). Production and processing of ultra-fine grained, nanostructured and amorphous alloys by mechanical alloying. Revista De Metalurgia, 43(3), 196–208. https://doi.org/10.3989/revmetalm.2007.v43.i3.65

Issue

Section

Articles