Automated microscopic characterization of metallic ores with image analysis: a key to improve ore processing. I: test of the methodology
DOI:
https://doi.org/10.3989/revmetalm.2007.v43.i4.75Keywords:
Mineral resources, Ore minerals, Image analysis, Optical microscopy, Ore processing, MineralogyAbstract
Ore microscopy has traditionally been an important support to control ore processing, but the volume of present day processes is beyond the reach of human operators. Automation is therefore compulsory, but its development through digital image analysis, DIA, is limited by various problems, such as the similarity in reflectance values of some important ores, their anisotropism, and the performance of instruments and methods. The results presented show that automated identification and quantification by DIA are possible through multiband (RGB) determinations with a research 3CCD video camera on a reflected light microscope. These results were obtained by systematic measurement of selected ores accounting for most of the industrial applications. Polarized light is avoided, so the effects of anisotropism can be neglected. Quality control at various stages and statistical analysis are important, as is the application of complementary criteria (e.g., metallogenetic). The sequential methodology is described and shown through practical examples.
Downloads
References
[1] R. Castroviejo, E. Chacon, C. Múzquiz y S. Tarquini, Int. Symp. Imaging Applications in Geology. Vol I, Lieja, Bélgica, Geovision., 1999, pp. 37-40.
[2] E. Coz, R. Castroviejo, D. Bonilla, F. García-Frutos, Fuel Sci. Direc. (2003), 45-55.
[3] E. Berrezueta, R. Castroviejo, F. Ortiz, M.J. Domínguez y J.M. Ramos, XXV Reunión SEM. Vol I, Alicante, España, Macla, 2005, pp. 47-50.
[4] R. Lastra, J.M.D. Wilson y L.J. Cabri, Trans. Inst. Min. Metall. (Sect. C: Mineral Process. Extr. Metall.), Canada, 1999, pp. 75-84.
[5] R. Castroviejo, E. Berrezueta y R. Lastra. Miner. Metall. Process. J. 19 (2002.)102-109.
[6] E. Berrezueta. Tesis Doctoral, Escuela Técnica Superior de Ingenieros de Minas, Universidad Politécnica de Madrid, 2004.
[7] W. Petruk, Applied Mineralogy in the Mining Industry, First Edition, ELSEIVER. Ottawa, Canada, 2000, pp. 268.
[8] A.J. Criddle, Ore microscopy and photometry,L. Cabri & D.J. Vaughan (Eds.), Modern Approaches to Ore and Environmental Mineralogy, MAC Short Course v. 27, Ottawa, Canada, 1998, pp. 1-74.
[9] S.H.U Bowie y P.R. Simpson, The Bowie-Simpson System for the Microscopic Determination of Ore Minerals. First Students Issue. Appl. Mineralogy Group of the Mineralogical Society, McCrone Research Assiociates, London, UK, 1980, pp. 10.
[10] R. Castroviejo, A. López, C. Múzquiz y E. Pirard, Int. Symp. Imaging Applications in Geology. Vol I, Lieja, Bélgica, Geovision, 1999, pp. 41-44.
[11] P. Ramdohr, Die Erzmineralien und ihre Verwachsungen. 4te. Aufl., Akademie Verlag, Berlin, 1975, pp. 1.277.
[12] P. Ramdohr, The ore minerals and their intergrowths, 2nd Ed., Pergamon, Oxford, UK, 2 vols., 1980, pp. 1.205.
[13] E. Berrezueta. Tesis Master, Escuela Técnica Superior de Ingenieros de Minas, Universidad Politécnica de Madrid, 2000.
[14] J.C. Russ, Computer-Assisted Microscopy. The measurement and analysis of images, Plenun Press, New york, 1990, pp 450.
[15] E. Pirard, V. Lebrun y J.F Nivart. Eur. Microscopy Anal. 60 (1999) 9-12.
[16] E. Pirard. Short Course COM-IMA. Int. Mineralogical Association-Commission on Ore Mineralogy, IMA-COM (Ed), Porto, Portugal, 1999, pp. 1-15.
[17] E. Pirard, Sem. Int. de Minería, Metalurgia y Medioambiente, Escuela Politécnica Nacional y Universidad Católica de Lovaina (Eds.), Quito, Ecuador, 2003, pp. 85-97.
[18] C. Múzquiz, Proyecto Fin de Carrera, Escuela Técnica Superior de Ingenieros de Minas de Madrid, Universidad Politécnica de Madrid, 1997.
[19] P. Picot y Z. Johan, Atlas des mineraux metalliques, Bureau des Reserches Geologiques et Minères, BRGM, ELSEVIER, Paris, Francia, 1977, pp. 408.
[20] A.J. Criddle y C. Stanley, Quantitative data file for ore minerals, Third Edition, Chapman & Hall Brithish Museum, London, 1993, pp. 635.
[21] Y. Chang y J.F. Reid, IEEE J. 5 (1996) 1.414-1.422.
[22] E. Berrezueta y R. Castroviejo. XI Cong. Int. Industria, Minería y Metalurgia. Vol I, Zaragoza, España, 2002, pp. 74-77.
[23] E. Pirard, Mineral. Mag. 447 (2004) 323-334. doi:10.1180/0026461046820189
[24] A. Martínez-Nistal, Tesis Doctoral, Facultad de Geología, Universidad de Oviedo, 1993.
[25] R. Castroviejo y E. Berrezueta, Reconocimiento automatizado de menas metálicas mediante análisis digital de imagen: un apoyo al proceso mineralúrgico. II: Criterios metalogenéticos discriminantes (en prep.).
[26] M. Tejera, A. Mavilio, M. Fernández, G. Muñiz, y R. Varela, Rev. Metal. Madrid 41 (2005) 169-174.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2007 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.