Pitting growth modelling in buried oil and gas pipelines using statistical techniques

Authors

  • J. C. Velázquez Departamento de Ingeniería Metalúrgica, ESIQIE, IPN, UPALM, EDIF - Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology
  • F. Caleyo epartamento de Ingeniería Metalúrgica, ESIQIE, IPN, UPALM, EDIF
  • A. Valor Facultad de Física, Universidad de la Habana
  • J. M. Hallen Departamento de Ingeniería Metalúrgica, ESIQIE, IPN, UPALM, EDIF

DOI:

https://doi.org/10.3989/revmetalm.1050

Keywords:

Pitting corrosion, Nonlinear regression, Monte Carlo simulations, Markov chains

Abstract


New deterministic and stochastic predictive models are proposed for external pitting corrosion in underground pipelines. The deterministic model takes into consideration the local chemical and physical properties of the soil as well as the pipeline coating to predict the time dependence of pitting depth and rate in a range of soils. This model, based on results from a field study, was used to conduct Monte Carlo simulations that established the probability distribution of pitting depth and growth rate in the studied soils and their evolution over the life of the pipeline. In the last stage of the study, an empirical Markov chain-based stochastic model was developed for predicting the evolution of pitting corrosion depth and rate distributions from the observed properties of the soil.

Downloads

Download data is not yet available.

References

[1] M. Romanoff, Underground Corrosion, NBS Circular 579, NBS, Washington, EE.UU. D.C., (1979), pp. 50-70.

[2] J. Provan y E. Rodriguez, Corrosion Sci. 45 (1989) 178-192. http://dx.doi.org/10.5006/1.3577840

[3] A. Valor, D. Rivas, Caleyo F. y J.M. Hallen, Corrosion Sci. 49 (2007) 559-579. http://dx.doi.org/10.1016/j.corsci.2006.05.049

[4] S. Bradford, Practical handbook of corrosion control in soils, CASTI Corrosion series, Edmonton, Canada, 2000, pp. 51-55.

[5] ASTM D422-63(2007) “Standard Test Method for Particle Size Analyses of Soils” (West Consho - hocken, PA: ASTM International, 2007).

[6] A. Peabody, Control of pipeline corrosion, 2ª. Ed., R. Bianchetti, NACE International, Houston TX. EE.UU., 2001, pp. 30-40.

[7] S. Mughabghab y T. Sullivan, Waste Mana ge 9 (1989) 239-251.

[8] Y. Katano, H.Miyata y H. Shimizu, Corrosion, 59 (2003) 155-161. http://dx.doi.org/10.5006/1.3277545

[9] S. Papavinasam, R.W. Revie, NACE International Annual Corrosion Conf. and Exp. San Diego, CA, EE.UU. 2006, Paper No. 06047.

[10] J.Race, S. Dawson, L. Stanley y S. Kariyawasam, J. Pipe Eng. 6 (2007) 15-29.

[11] F. Kajiyama e Y. Koyoma, Corrosion Sci. 53 (1997) 156-162. http://dx.doi.org/10.5006/1.3280453

[12] M. Kowaka, H. Tsuge, M. Akashi y K.Masa mura, An introduction to the life prediction of plant materials. Maruzen Pub. Tokio Japón, 1984, pp. 22-37.

[13] H.P. Hong, Corrosion Sci. 55 (1999) 10-15. http://dx.doi.org/10.5006/1.3283958

[14] J. Gentle, Random number generation and Monte Carlo Methods, 2ª Ed. Springer, New York, EE.UU. 2003, pp. 18-24.

[15] E. Castillo, A. Hadi, N. Balakrisjnan y J. Sarabia, Extreme Value and Related Models with Appli ca tions in Engineering and Science, Wiley- Inter scien ce, New Jersey, EE.UU., 2005, pp. 21-55.

[16] E. Oguzie, L. Agochukwu y A. Onuchukwu, Mater. Chem. Phys. 84 (2004) 1-6. http://dx.doi.org/10.1016/j.matchemphys.2003.09.002

[17] E. Parzen, Stochastic Process, SIAM Series, Oackland, California, EE.UU, 1999, pp. 304. [18] D. Cox y H. Miller, The theory of stochastic processes, 1ª Ed., Chapman & Hall, CRC, Boca Raton, Florida, EE.UU., 1965, pp. 82.

[18] D. Cox y H. Miller, The theory of stochastic processes, 1ª Ed., Chapman & Hall, CRC, Boca Raton, Florida, EE.UU., 1965, pp. 82.

Downloads

Published

2011-06-30

How to Cite

Velázquez, J. C., Caleyo, F., Valor, A., & Hallen, J. M. (2011). Pitting growth modelling in buried oil and gas pipelines using statistical techniques. Revista De Metalurgia, 47(3), 244–261. https://doi.org/10.3989/revmetalm.1050

Issue

Section

Articles