Does magnesium compromise the high temperature processability of novel biodegradable and bioresorbables PLLA/Mg composites?
DOI:
https://doi.org/10.3989/revmetalm.011Keywords:
Biodegradable materials, Magnesium, Particle reinforced composites, Poly-L-lactic acidAbstract
This paper addresses the influence of magnesium on melting behaviour and thermal stability of novel bioresorbable PLLA/Mg composites as a way to investigate their processability by conventional techniques, which likely will require a melt process at high temperature to mould the material by using a compression, extrusion or injection stage. For this purpose, and to avoid any high temperature step before analysis, films of PLLA loaded with magnesium particles of different sizes and volume fraction were prepared by solvent casting. DSC, modulated DSC and thermogravimetry analysis demonstrate that although thermal stability of PLLA is reduced, the temperature window for processing the PLLA/Mg composites by conventional thermoplastic routes is wide enough. Moreover, magnesium particles do not alter the crystallization behaviour of the polymer from the melt, which allows further annealing treatments to optimize the crystallinity in terms of the required combination of mechanical properties and degradation rate.
Downloads
References
Álvarez López, M., Pereda, M.D., del Valle, J.A., Fernández-Lorenzo, M., Garc.a-Alonso, M.C., Ruano, O.A., Escudero, M.L. (2010). Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. Acta Biomater. 6 (5), 1763–1771. http://dx.doi.org/10.1016/j.actbio.2009.04.041 PMid:19446048
Ambrose, C.G., Clanton, T.O. (2004). Bioabsorbable Implants: Review of Clinical Experience in Orthopedic Surgery. Ann. Biomed. Eng. 32 (1), 171–177. http://dx.doi.org/10.1023/B:ABME.0000007802.59936.fc
Boccaccini, A.R., Erol, M., Stark, W.J., Mohn, D., Hong, Z., Mano, J.F. (2010). Polymer/bioactive glass nanocomposites for biomedical applications. A Review. Compos. Sci. Technol. 70, 1764–1776. http://dx.doi.org/10.1016/j.compscitech.2010.06.002
Busam, M.L., Esther, R.J., Obremskev, W.T. (2006). Hardware removal: indications and expectations. J. Am. Acad. Orthop. Surg. 14 (2), 113–120. PMid:16467186
Cam, D., Marucci, M. (1997). Influence of residual monomers and metals on poly(llactide) thermal stability. Polymer 38 (8), 1879–1884. http://dx.doi.org/10.1016/S0032-3861(96)00711-2
Carboneras, M., Hernández-Alvarado, L.A., Mireles, Y.E., Hernández, L.S., García-Alonso, M.C., Escudero, M.L. (2010). Tratamientos químicos de conversión para la protección de magnesio biodegradable en aplicaciones temporales de reparación ósea. Rev. Metal. 46 (1), 86–92. http://dx.doi.org/10.3989/revmetalm.0944
Carboneras, M., Iglesias, C., Pérez-Maceda, B.T., del Valle, J.A., García-Alonso, M.C., Alobera, M.A., Clemente, C., Rubio, J.C., Escudero, M.L., Lozano, R.M. (2011). Comportamiento frente a la corrosión y biocompatibilidad in vitro/in vivo de la aleación AZ31 modificada superficialmente. Rev. Metal. 47 (3), 212–223. http://dx.doi.org/10.3989/revmetalm.1065
Castellani, C., Lindtner, R.A., Hausbrandt, P., Tschegg, E., Stanzl-Tschegg, S.E., Zanoni, G., Beck, S., Weinberg, A.M. (2011). Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control. Acta. Biomat. 7 (1), 432–440. http://dx.doi.org/10.1016/j.actbio.2010.08.020 PMid:20804867
Cifuentes, S.C., Frutos, E., González-Carrasco, J.L., Mu.oz, M., Multigner, M., Chao, J., Benavente, R., Lieblich, M. (2012). Novel PLLA/magnesium composite for orthopedic applications: A proof of concept. Mater. Lett. 74, 239–242. http://dx.doi.org/10.1016/j.matlet.2012.01.134
Chiang, M.F., Chu, M.Z., Wu, T.M. (2011). Effect of layered double hydroxides on the thermal degradation behavior of biodegradable poly(l-lactide) nanocomposites. Polym. Degrad. Stab. 96, 60–66. http://dx.doi.org/10.1016/j.polymdegradstab.2010.11.002
Di Lorenzo, M.L. (2001). Determination of spherulite growth rates of poly(L-lactic acid) using combined isothermal and non-isothermal procedures. Polymer 42, 9441–9446. http://dx.doi.org/10.1016/S0032-3861(01)00499-2
Dobreva, T., Pere-a, J.M., Pérez, E., Benavente, R., García, M. (2010a). Crystallization behavior of poly(L-lactic acid)-based ecocomposites prepared with kenaf fiber and rice straw. Polym. Compos. 31, 974–984. http://dx.doi.org/10.1002/pc.20882
Dobreva, T., Benavente, R., Pere.a, J.M., Pérez, E., Avella, M., García, M., Bogoeva-Gaceva, G. (2010b). Effect of different thermal treatments on the mechanical performance of poly(L-lactic acid) based eco-composites. J. Appl. Polym. Sci. 116, 1088–1098.
Eglin, D., Alini, M. (2008). Degradable polymeric materials for osteosynthesis: tutorial. Eur. Cell. Mater. 16, 80–91. PMid:19101891
Fan, Y., Nishida, H., Mori, T., Shirai, Y., Endo, T. (2004). Thermal degradation of poly(l-lactide): effect of alkali earth metal oxides for selective l, l-lactide formation. Polymer 45 (4), 1197–1205. http://dx.doi.org/10.1016/j.polymer.2003.12.058
Gracia-Fernández, C.A., Gómez-Barreiro, S., L.pez-Beceiro, J., Naya, S., Artiaga, R. (2012). New approach to the double melting peak of poly(l-lactic acid) observed by DSC. J. Mater. Res. 27 (10), 1379–1382. http://dx.doi.org/10.1557/jmr.2012.57
Ghosh, S., Viana, J.C., Reis, R.L., Mano, J.F. (2007). Effect of processing conditions on morphology and mechanical properties of injection-molded poly(l-lactic acid). Polym. Eng. Sci. 47 (7), 1141–1147. http://dx.doi.org/10.1002/pen.20799
Gogolewski, S., Jovanovic, M., Perren, S.M. (1993). The effect of melt-processing on the degradation of selected polyhydroxyacids: polylactides, polyhydroxybutyrate, and polyhydroxybutyrate-co-valerates. Polym. Degrad. Stab. 40, 313–322. http://dx.doi.org/10.1016/0141-3910(93)90137-8
Hoffman, J.D. (1983). Regime III crystallization in meltcrystallized polymers: The variable cluster model of chain folding. Polymer 24 (1), 3–26. http://dx.doi.org/10.1016/0032-3861(83)90074-5
Iannace, S., Nicolais, L. (1997). Isothermal crystallization and chain mobility of poly(L-lactide). J. Appl. Polym. Sci. 64, 911–919. http://dx.doi.org/10.1002/(SICI)1097-4628(19970502)64:5<911::AID-APP11>3.0.CO;2-W
Iannace, S., Maffezzoli, A., Leo, G., Nicolais, L. (2001). Influence of crystal and amorphous phase morphology on hydrolytic degradation of PLLA subjected to different processing conditions. Polymer 42 (8), 3799–3807. http://dx.doi.org/10.1016/S0032-3861(00)00744-8
Ikarashi, Y., Tsuchiya, T., Nakamura, A. (2000). Effect of heat treatment of poly(l-lactide) on the response of osteoblastlike MC3T3-E1 cells. Biomaterials 21 (12), 1259–1267. http://dx.doi.org/10.1016/S0142-9612(00)00008-9
Lim, L.T., Auras, R., Rubino, M. (2008). Processing technologies for poly(lactic acid). Prog. Polym. Sci. 33, 820–852. http://dx.doi.org/10.1016/j.progpolymsci.2008.05.004
Mandelkern, L. 2002. Crystallization of Polymers. Second Edition. Vol. 1. Equilibrium Concepts. Cambridge University Press.
Maurus, P.B., Kaeding, C.C. (2004). Bioabsorbable implant material review. Oper. Techn. Sport. Med. 12 (3), 158–160. http://dx.doi.org/10.1053/j.otsm.2004.07.015
Middleton, J.C., Tipton, A.J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21, 2335–2346. http://dx.doi.org/10.1016/S0142-9612(00)00101-0
Mijovic, J., Sy, J-W. (2002). Molecular dynamics during crystallization of poly(l-lactic acid) as studied by broad-band dielectric relaxation spectroscopy. Macromolecules 35, 6370–6376. http://dx.doi.org/10.1021/ma0203647
Miyata, T., Masuko, T. (1998). Crystallisation Behaviour of Poly(L-lactide). Polymer 39 (22), 5515–5521. http://dx.doi.org/10.1016/S0032-3861(97)10203-8
Motoyama, T., Tsukegi, T., Shirai, Y., Nishida, H., Endo, T. (2007). Effects of MgO catalyst on depolymerization of poly-l-lactic acid to l, l-lactide. Polym. Degrad. Stab. 92 (7), 1350–1358. http://dx.doi.org/10.1016/j.polymdegradstab.2007.03.014
Müller, W.D., Nascimento, M.L., Zeddies, M., C.rsico, M., Gassa, L.M., Fernández Lorenzo de Mele, M.A. (2007). Magnesium and its alloys as degradable biomaterials. Corrosion studies using potentiodynamic and EIS electrochemical techniques. Mater. Res. 10 (1), 5–10. http://dx.doi.org/10.1590/S1516-14392007000100003
Nishida, H., Fan, Y., Mori, T., Oyagi, N., Shirai, Y., Endo, T. (2005). Feedstock recycling of flame-resisting poly(lactic acid)/aluminum hydroxide composite to L, l-lactide. Ind. Eng. Chem. Res. 44, 1433–1437. http://dx.doi.org/10.1021/ie049208+
Papageorgiou, G,Z., Achilias, D.S., Nanaki, S., Beslikas, T., Bikiaris, D. (2010). PLA nanocomposites: effect of filler type on non-isothermal crystallization. Thermochim. Acta 511, 129–139. http://dx.doi.org/10.1016/j.tca.2010.08.004
Pinho, E.D., Martins, A., Ara.jo, J.V., Reis, R.L., Neves, N.M. (2009). Degradable particulate composite reinforced with nanofibres for biomedical applications. Acta Biomater. 5 (4), 1104–1114. http://dx.doi.org/10.1016/j.actbio.2008.11.018 PMid:19136320
Ramakrishna, S., Mayer, J., Wintermantel, E., Leong, K.M. (2001). Biomedical applications of polymer composite materials. Compos. Sci. Technol. 61, 1189–1224. http://dx.doi.org/10.1016/S0266-3538(00)00241-4
Shikinami, Y., Okuno, M. (1999). Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics. Biomaterials 20 (9), 859–877. http://dx.doi.org/10.1016/S0142-9612(98)00241-5
Staiger, M.P., Pietak, A.M., Huadmai, J., Dias, G. (2006). Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 27 (9), 1728–1734. http://dx.doi.org/10.1016/j.biomaterials.2005.10.003 PMid:16246414
Suuronen, R. (1991). Comparison of absorbable self-reinforced poly-l-lactide screws and metallic screws in the fixation of mandibular condyle osteotomies. Experimental study in sheep. J. Oral Maxillofac. Surg. 49 (9), 989–995. http://dx.doi.org/10.1016/0278-2391(91)90065-T
Tsuji, H., Fukui, I. (2003). Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending. Polymer 44 (10), 2891–2896. http://dx.doi.org/10.1016/S0032-3861(03)00175-7
Wang, H., Shi, Z.M., Yang, K. (2009). Magnesium and magnesium alloys as degradable metallic biomaterials. In: Proc. 4th International Light Metals Technology Conference (LMT2009), 28 Jun–1 Jul, Gold Coast, Queensland.
Wang, Y., Mano, J.F. (2005). Influence of melting conditions on the thermal behaviour of poly(l-lactic acid). Eur. Polym. J. 41 (10), 2335–2342. http://dx.doi.org/10.1016/j.eurpolymj.2005.04.030
Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K.U., Willumeit, R., Feyerabend, F. (2008). Degradable biomaterials based on magnesium corrosion. Curr. Opi. Solid. State Mat. Sci. 12, 63–72. http://dx.doi.org/10.1016/j.cossms.2009.04.001
Wong, H.M., Yeung, K.W., Lam, K.O., Tam, V., Chu, P.K., Luk, K.D., Cheung, K.M. (2010). A biodegradable polymerbased coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials 31 (8), 2084–2096. http://dx.doi.org/10.1016/j.biomaterials.2009.11.111 PMid:20031201
Zhou, H., Lawrence, J.G., Bhaduri, S.B. (2012). Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: A review. Acta Biomater. 8(6), 1999–2016. http://dx.doi.org/10.1016/j.actbio.2012.01.031
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.