Noise resistance applied to the study paints
DOI:
https://doi.org/10.3989/revmetalm.039Keywords:
Corrosion, Electrochemical noise, Noise resistance, Paints, Power spectral densityAbstract
Electrochemical noise is one of the methods of analysis used to interpret the phenomenon of corrosion. It has a number of advantages over other methodology types including its simplicity, its low cost and the fact that it does not disturb the system. This methodology appears to be effective together with other techniques in metal-electrolyte systems. In this case the technique is applied on its own on commercial anti-corrosion paints for which no information is available from other techniques. The main result of this study reveals the effectiveness of the noise resistance parameter, which had already been tested in the lab, when it is used to explain how the paint system behaves in industry.
Downloads
References
Ahmed, N.M., Selim, M.M. (2010). Anticorrosive performance of titanium dioxide-talc hybrid pigments in alkyd paint formulations for protection of steel structures. Anti- Corros. Methods Mater. 57 (3), 133–141. http://dx.doi.org/10.1108/00035591011040092
ASTM International (2012). Standard Terminology for Paint, Related Coatings, Materials, and Applications. (ASTM D1612-05). West Conshohocken, PA, 2005, USA. http:// dx.doi.org/10.1520/D0016-12.
Casta-eda, I., Romero, M., Malo, J.M., Uruchurtu, J. (2010). Electrochemical noise of the erosion-corrosion of copper in relation with its hydrodynamic parameters. Rev. Metal. 46 (5), 446–457.
Espada Recarey, L., Sánchez Bermúdez, A., Urréjola Madri-án, S., Bouzada Alvela, F. (2001). Noise resistance applied to the study of zinc rich paints. Rev. Metal. 37 (1), 24–33. http://dx.doi.org/10.3989/revmetalm.2001.v37.i1.438
Cottis, R.A. (2001). Interpretation of electrochemical noise data. Corrosion 57 (3), 265–285. http://dx.doi.org/10.5006/1.3290350
Deyá, M.C., Del Amo, B., Spinelli, E., Romagnoli, R. (2013). The assessment of a smart anticorrosive coating by the electrochemical noise technique. Prog. Org. Coat. 76 (4) 525–532. http://dx.doi.org/10.1016/j.porgcoat.2012.09.014
Faidi, S.E., Scantlebury, J.D., Bullivant, P., Whittle, N.T., Savin, R. (1993). An electrochemical study of zinc-containing epoxy coatings on mild steel. Corros. Sci. 35 (5–8), 1319–1328. http://dx.doi.org/10.1016/0010-938X(93)90354-J
Gaona-Tiburcio, C., Aguilar, L.M.R., Zambrano, P., Estupi-án López, F., Cabral, J.A., Nieves-Mendoza, D., Castillo- González, E., Almeraya-Calderón, F. (2014). Electrochemical noise analysis of nickel based superalloys in acid solutions. Int. J. Electrochem. Sci. 9 (2), 523–533.
Hare, C.H. (1995). Protective Coatings: Fundamentals of Chemistry and composition. Surf. Coat. Int. 78, pp. 1–14-289–231.
Homborg, A.M., Tinga, T., Zhang, X., van Westing, E.P.M., Oonincx, P.J., de Wit, J.H.W., Mol, J.M.C. (2012). Time– frequency methods for trend removal in electrochemical noise data. Electrochim. Acta 70, 199–209. http://dx.doi.org/10.1016/j.electacta.2012.03.062
Mansfeld, F., Xiao, H., Han, L.T., Lee, C.C. (1997). Electrochemical impedance and noise data for polymer coated steel exposed at remote marine test sites. Prog. Org. Coat. 30 (1–2), 89–100. http://dx.doi.org/10.1016/S0300-9440(96)00675-3
Muniandy, S.V., Chew, W.X., Kan, C.S. (2011). Multifractal modelling of electrochemical noise in corrosion of carbon steel. Corros. Sci. 53 (1), 188–200. http://dx.doi.org/10.1016/j.corsci.2010.09.005
Olaya-Flórez, J., Torres-Luque, M.M. (2012). Corrosion resistance of organic coatings through electrochemical impedance spectroscopy. Ingeniería y Universidad 16 (1), 43–58.
Pujar, M.G., Anita, T., Shaikh, H., Dayal, R.K., Khatak, H.S. (2007). Analysis of electrochemical noise (EN) data using MEM for pitting corrosion of 316 SS in chloride solution. Int. J. Electrochem. Sci. 2 (4), 301–310.
Sarmiento, E., González-Rodriguez, J.G., Uruchurtu, J., Sarmiento, O., Menchaca, M. (2009). Fractal analysis of the corrosion inhibition of carbon steel in a bromide solution by lithium chromate. Int. J. Electrochem. Sci. 4 (1), 144–155.
Shao, Y., Jia, C., Meng, G., Zhang, T., Wang, F. (2009). The role of a zinc phosphate pigment in the corrosion of scratched epoxy-coated steel. Corros. Sci. 51 (2), 371–379. http://dx.doi.org/10.1016/j.corsci.2008.11.015
Skerry, B.S., Eden, D.A. (1987). Electrochemical testing to assess corrosion protective coatings. Prog. Org. Coat. 15 (3), 269–285.
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.