Permanent magnets and its production by powder metallurgy
DOI:
https://doi.org/10.3989/revmetalm.121Keywords:
Magnetic materials, Permanent magnets, Powder Metallurgy, SinteringAbstract
In this work, the historical relationship between permanent magnets and powder metallurgy is reviewed. Powder metallurgy is a manufacturing technique based on the compaction of powders that are sintered to create a solid product. This technique was used in the production of permanent magnets for the first time in the 18th century and, nowadays, most permanent magnetic materials are manufacturing by this mean. Magnetic properties are highly dependent on the microstructure of the final product, the magnetic alignment of domains and presence of porosity, to mention a few, and powder metallurgy enables fine control of these factors.
Downloads
References
Blackford, J.R., Skouvlakis, G., Pursera, M., Koutsosa, V. (2012). Friction on ice: stick and slip. Faraday Discuss. 156, 243–254. https://doi.org/10.1039/c2fd00128d PMid:23285632
Campbell, P. (1994). Permanent Magnet Materials and their Application. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511623073
Campos, M.F., Okumura, H., Hadjipanayis, G.C., Rodrigues, D., Landgraf, F.J.G., Neiva, A.C., Romero, S.A., Missell, F.P. (2004). Effect of several heat treatments on the microstructure and coercivity of SmCo5 magnets. J. Alloy Compd. 368 (1–2), 304–307. https://doi.org/10.1016/S0925-8388(03)00671-6
Corfield, M.R. (2003). Production of sintered permanent magnets based on (Nd/Pr)Fe-B alloys. Ph.D. Thesis, University of Birmingham.
Croat, J.J., Herbst, J.F., Lee, R.W., Pinkerton, F.E. (1984). High-energy product Nd-Fe-B permanent magnets. Appl. Phiys. Lett. 44 (1), 148–149. https://doi.org/10.1063/1.94584
De Castro, J.A., Rodrigues, D., De Campos, M.F. (2014). Rare earths: from the extraction to the application. Proceedings 24th Workshop on Rare Earth Permanent Magnets and Their Applications (REPM2014), Annapolis, USA, pp. 358–360.
De Vos, K.J. (1969). Magnetism and Metallurgy. Vol. 2, Academic Press, London.
Degri, M.J.J. (2014). The Processing and Characterisation of Recycled NdFeB-type Sintered Magnets. Ph.D. Thesis, University of Birmingham.
Dillon, H.M. (2014). Effects of heat treatment and processing modifications on microstructure in alnico 8H permanent magnet alloys for high temperature applications. M.Sc Thesis, Iowa State University.
Doser, M., Ribitch, R.W., Croat, J.J., Panchanathan, V. (1991). Bonded anisotropic Nd-Fe-B magnets from rapidly solidified powders. J. Appl. Phys. 69 (8), 5835–5837. https://doi.org/10.1063/1.347842
EPMA (2017). Economic Advantages. Accessed 18/04/2018. https://www.epma.com/powder-metallurgy-economic-advantages.
EPMA (2008). Introduction to Powder Metallurgy: The Process and its Products. European Powder Metallurgy Association, Shrewsbury.
Fidler, J., Knoch, K.G. (1989). Electron microscopy of Nd-Fe-B based magnets. J. Magn. Magn. Mater. 80 (1), 48–56. https://doi.org/10.1016/0304-8853(89)90323-5
German, R.M. (1996). Sintering Theory and Practice. Wiley-Interscience Publication, New York.
German, R.M., Suri, P., Park, S.J. (2009). Review: liquid phase sintering. J. Mater. Sci. 44 (1), 1–39. https://doi.org/10.1007/s10853-008-3008-0. https://doi.org/10.1007/s10853-008-3008-0
Gupta, K.M. (2015). Engineering Materials: Research, Applications and Advances. CRC Press, Boca Raton, USA.
Gutfleisch, O., Kirchner, A., Grünberger, W., Hinz, D., Schäfer, R., Schultz, L., Harris, I.R., Müller, K.H. (1998). Backward extruded NdFeB HDDR ring magnets. J. Magn. Magn. Mater. 183 (3), 359–364. https://doi.org/10.1016/S0304-8853(97)01087-1
Gutfleisch, O., Müller, K.H., Khlopkov, K., Wolf, M., Yan, A., Schäfer, R., Gemming, T., Schultz, L. (2006). Evolution of magnetic domain structures and coercivity in high-performance SmCo 2:17-type permanent magnets. Acta Materialia 54 (4), 997–1008. https://doi.org/10.1016/j.actamat.2005.10.026
Hakker, P.J., Weber, G.H. (1958). Method of making a permanent magnet. U.S. Patent 2,837,483.
Harris, I.R., Evans, J., Nyholm, P.S. (1979). Rare earth metal alloy magnets. British Patent 1,554,384.
Harris, I.R., Noble, C., Bailey, T. (1985). The hydrogen decrepitation of an Nd15Fe77B8 magnetic alloy. J. Less Common Met. 106 (1), L1-L4. https://doi.org/10.1016/0022-5088(85)90380-7
Heck, C. (1974). Magnetic Materials and Their Applications. Butterworths & Co., London. PMCid:PMC2139762
Hsu, S., Wang, K., Su, L. (1987). Studies on heat treatment for Nd-Fe-B magnets. IEEE T. Magn. 23 (5), 2515–2517. https://doi.org/10.1109/TMAG.1987.1065349
Iwama, Y., Takeuchi, M. (1974). Spinodal Decomposition in Alnico 8 Magnet alloy. T. Jpn. I. Met. 15 (5), 371–377. https://doi.org/10.2320/matertrans1960.15.371
Kaneko, Y., Kuniyoshi, F., Ishigaki, N. (2006). Proven technologies on high-performance Nd-Fe-B sintered magnets. J. Alloy Compd. 408–412, 1344–1349. https://doi.org/10.1016/j.jallcom.2005.04.169
Kittel, C., Nesbitt, E.A., Shockley, W. (1950). Theory of Magnetic Properties and Nucleation in Alnico V. Phys. Rev. 77, 839–840. https://doi.org/10.1103/PhysRev.77.839.2
Lee, R.W. (1985). Hot-pressed neodymium-iron-boron magnets. Appl. Phys. Lett. 46 (8), 790–791. https://doi.org/10.1063/1.95884
Li, W.F., Ohkubo, T., Hono, K., Sagawa, M. (2009). The origin of coercivity decrease in fine grained Nd–Fe–B sintered magnets. J. Magn. Magn. Mater. 321 (8), 1100–1105. https://doi.org/10.1016/j.jmmm.2008.10.032
Li, X.T., Yue, M., Liu, W.Q., Li, X.L., Yi, X.F., Huang, X.L., Zhang, D.T., Chen, J.W. (2015). Large batch recycling of waste Nd-Fe-B magnets to manufacture sintered magnets with improved magnetic properties. J. Alloys Compd. 649, 656–660. https://doi.org/10.1016/j.jallcom.2015.07.201
Liu, N.C., Kim, A.S. (1990). Abnormal grain growth in sintered Nd-Fe-B magnets. J. Appl. Phys. 67 (9), 4629–4631. https://doi.org/10.1063/1.346071
Liu, J.F., Chui, T., Dimitrov, D., Hadjipanayis, G.C. (1998). Abnormal temperature dependence of intrinsic coercivity in Sm(Co,Fe,Cu,Zr)z powder materials. Appl. Phys. Lett. 73 (20), 3007–3009. https://doi.org/10.1063/1.122659
Liu, J.F., Ding, Y., Hadjipanayis, G.C. (1999a). Effect of iron on the high temperature magnetic properties and microstructure of Sm(Co,Fe,Cu,Zr)z permanent magnets. J. Appl. Phys. 85 (3), 1670–1674. https://doi.org/10.1063/1.369304
Liu, J.F., Ding, Y., Zhang, Y., Dimitrar, D., Zhang, F., Hadjipanayis, G.C. (1999b). New rare-earth permanent magnets with an intrinsic coercivity of 10 kOe at 500 °C. J. Appl. Phys. 85 (8), 5660–5662. https://doi.org/10.1063/1.369832
Liu, J.F., Zhang, Y., Dimitrov, D., Hadjipanayis, G.C. (1999c). Microstructure and high temperature magnetic properties of Sm(Co,Fe,Cu,Zr)z (z=6.7–9.1) permanent magnets. J. Appl. Phys. 85 (5), 2800–2804. https://doi.org/10.1063/1.369597
Mazda, F.F. (1989). Electronics Engineer's Reference Book. Butterworth-Heinemann, London.
McGuiness, P.J., Williams, A.J., Harris, I.R., Rozendaal, E., Ormerod, J. (1989). Sintering behaviour of NdFeB magnets. IEEE T. Magn. 25 (5), 3773–3775. https://doi.org/10.1109/20.42429
McCaig, M. (1977). Permanent Magnets in Theory and Practice. Pentech Press, London. PMid:609869
Mishima, T. (1931). Magnet steel containing nickel and aluminium. U.S. Patent 2,027,994.
Nesbitt, E.A., Wernick, J.H. (1973). Rare Earth Permanent Magnets. Academic Press, New York. https://doi.org/10.1063/1.3128366
Nothnagel, P., Muller, K.H., Eckert, D., Handstein, A. (1991). The influence of particle size on the coercivity of sintered NdFeB magnets. J. Magn. Magn. Mater. 101 (1–3), 379–381. https://doi.org/10.1016/0304-8853(91)90786-A
Oesterreicher, K., Oesterreicher, H. (1984). Structure and Magnetic Properties of Nd2Fe14BH2.7. Phys. Status Solidi A 85 (1), K61-K64. https://doi.org/10.1002/pssa.2210850152
Ormerod, J. (1988). Permanent Magnet Materials. IEE Colloquium Permanent Magnet Machine.
Overshott, K.J. (1991). Magnetism: It is Permanent. IEE Proc.-A 138 (1), 22–30.
Pei, W., He, C., Lian, F., Zhou, G., Yang, H. (2002). Structures and magnetic properties of sintered Nd-Fe-B magnets produced by strip casting technique. J. Magn. Magn. Mater. 239 (1–3), 475–478. https://doi.org/10.1016/S0304-8853(01)00654-0
Ramakrishnan, P. (1983). History of powder metallurgy. IJHS 18 (1), 109–114. http://www.insa.nic.in/writereaddata/UpLoadedFiles/IJHS/Vol18_1_6_PRamakrishnan.pdf.
Ramesh, R., Thomas, G., Ma, B.M. (1988). Magnetization reversal in nucleation controlled magnets. II. Effect of grain size and size distribution on intrinsic coercivity of Fe-Nd-B magnets. J. Appl. Phys. 64 (11), 6416–6423. https://doi.org/10.1063/1.342055
Reed, J.S. (1995). Principles of Ceramic Processing. John Wiley & Sons, New York.
Sagawa, M., Fujimura, S., Togawa, N., Yamamoto, H., Matsuura, Y. (1984a). New Material for Permanent Magnets on a Base of Nd and Fe. J. Appl. Phys. 55 (6), 2083–2087. https://doi.org/10.1063/1.333572
Sagawa, M., Fujimura, S., Yamamoto, H., Matsuura, Y, Hiraga, K. (1984b). Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds. IEEE Trans. Magn. 20 (5), 1584–1589. https://doi.org/10.1109/TMAG.1984.1063214
?lusarek, B., Zakrzewski, K. (2012). Magnetic properties of permanent magnets for magnetic sensors working in wide range of temperature. Przeglad Elektrotechniczny 88 (7), 123–126.
Smithells, J.C. (1976). Metals Reference Book. Butterworth-Heinemann, Burlington.
Strnat, K., Hoffer, G., Olson, J., Ostertag, W. (1967). A family of new cobalt-base permanent magnet materials. J. Appl. Phys. 38 (3), 1001. https://doi.org/10.1063/1.1709459
Strnat, K.J. (1978). Rare-earth magnets in present production and development. J. Magn. Magn. Mater. 7 (1–4), 351–360. https://doi.org/10.1016/0304-8853(78)90218-4
Strnat, K.J. (1990). Modern permanent magnets for applications in electro-technology. P. IEEE 78 (6), 923–937. https://doi.org/10.1109/5.56908
Stuyts, A.L., Hoekstra, A.H., Weber, G.H., Rathenau, G.W. (1959). Making anisotropic permanent magnets. U.S. Patent 2,900,344 A.
Tang, W., Zhou, L., Kassen, A., Palasyuk, A., White, E., Dennis, K.W., Kramer, M., McCallum, R.W., Anderson, I. (2015). New Alnico Magnets Fabricated from Pre-Alloyed Gas-Atomized Powder Through Diverse Consolidation Techniques. IEEE Trans. Magn. 51 (11), 1–3. https://doi.org/10.1109/TMAG.2015.2437355
Tawara, Y., Senno, H. (1972). Sintered magnets of copper- and iron-modified cerium cobalt. IEEE Trans. Magn. 8 (3), 560–561. https://doi.org/10.1109/TMAG.1972.1067360
Thümmler, F., Oberacker, R. (1993). Introduction to Powder Metallurgy. The Institute of Materials, London, CRC Press. PMid:8416814
Uestuener, K., Katter, M., Rodewald, W. (2006). Dependence of the Mean Grain Size and Coercivity of Sintered Nd-Fe-B Magnets on the Initial Powder Particle Size. IEEE Trans. Magn. 42, 2897–2899. https://doi.org/10.1109/TMAG.2006.879889
Vacuumschmelze (2012). Magnetic Field Pressing Technology. Accessed 20/03/2018. http://www.vacuumschmelze.com/en/research-innovation/process-technology/permanent-magnets-systems/magnetic-field-pressing-technology.html.
Verma, A., Pandey, O.P., Sharma, P. (2000). Strontium ferrite permanent magnet – An overview. IJEMS 7, 364–369. http://nopr.niscair.res.in/bitstream/123456789/24430/1/IJEMS%207(5-6)%20364-369.pdf.
Vicente, C.M.S., André, P.S., Ferreira, R.A.S. (2012). Simple measurement of surface free energy using a web cam. Rev. Bras. Ensino Fis. 34 (3), 1–5. https://doi.org/10.1590/S1806-11172012000300012
Wallace, W., Craig, R., Gupta, H., Hirosawa, S., Pedziwiatr, A., Oswald, E., Schwab, E. (1984). High energy magnets from PrCo5. IEEE Trans. Magn. 20 (5), 1599–1601. https://doi.org/10.1109/TMAG.1984.1063241
Went, J.J., Rathenau, G.W., Gorter, E.W., Oosterthour, G.W. (1952). Ferroxdure, a class of permanent magnetic materials. Philips Techn. Rev. 13 (7), 194–208
Wiesinger, G., Hilscher, G., Grossinger, R. (1987). Effect of hydrogen absorption on the magnetic properties of Nd15Fe77B8. J. Less Common Met. 131 (1–2), 409–417. https://doi.org/10.1016/0022-5088(87)90540-6
Wilson, B. (1779). V. Account of Dr. Knight's method of making artificial loadstones. Phil. Trans. R. Soc. Lond. 69, 51–53. https://doi.org/10.1098/rstl.1779.0006
Yang, J.P., Pi, S.H., Kim, Y.P., Kim, Y.G. (1993). Effect of Cyclic Heat Treatment on Coercivity and Microstructure of Sintered Nd15Fe77B8 Magnets. J. Mater. Sci. Eng. B 18 (1), 78–82. https://doi.org/10.1016/0921-5107(93)90113-2
Zakotnik, M., Devlin, E., Harris, I.R., Williams, A.J. (2006). Hydrogen decrepitation and recycling of Nd-Fe-B-type sintered magnets. Proceedings of the 19th Workshop on Rare Earth Permanent Magnets and Their Applications, 289–295, Beijing, China.
Zakotnik, M., Harris, I.R., Williams, A.J. (2008). Possible methods of recycling Nd-Fe-B-type sintered magnets using the HD/degassing process. J. Alloy Compd. 450 (1–2), 525–531. https://doi.org/10.1016/j.jallcom.2007.01.134
Zakotnik, M., Harris, I.R., Williams, A.J. (2009). Multiple recycling of Nd-Fe-B-type sintered magnets. J. Alloys Compd. 469 (1–2), 314–321. https://doi.org/10.1016/j.jallcom.2008.01.114
Zlatkov, B.S., Nikolic, M.V., Aleksic, O., Danninger, H., Halwax, E. (2009). A study of magneto-crystalline alignment in sintered barium hexaferrite fabricated by powder injection molding. J. Magn. Magn. Mater. 321 (4), 330–335. https://doi.org/10.1016/j.jmmm.2008.09.014
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.