Wear behavior and corrosion properties of Age-hardened AA2010 aluminum alloy
DOI:
https://doi.org/10.3989/revmetalm.201Keywords:
Aging, Aluminum, Corrosion, Hardness, Tafel, WearAbstract
This study aims to investigate the wear and corrosion resistance after heat treatment of AA2010 alloy. AA2010 alloy was solutionized at 500 °C for 1 h, and then quenched in water at room temperature. Solution treatment was followed by aging treatment at 160 °C for 16, 18, and 22 h. Peak hardness was achieved at 18 h. Ball-on-disc wear test caused cold deformation and hence increased the hardness of the worn surface locally. The corrosion rate of heat treated AA2010 alloy was determined according to Tafel extrapolation method. Corrosion test was carried out in 3.5 wt.% NaCl solution at room temperature. The minimum corrosion rate was obtained in 18 h aged AA2010 alloy. For moderate wear resistance and good corrosion resistance, 18 h aging is recommended for AA2010 alloy. Both the intergranular and pitting corrosion mechanisms were observed on the corroded surface of the AA2010 alloy.
Downloads
References
Abarghouie, S.M.R.M., Reihani, S.M.S. (2010). Investigation of friction and wear behaviors of 2024 Al and 2024 Al/SiCp composite at elevated temperatures. J. Alloys Compd. 501 (2), 326-332. https://doi.org/10.1016/j.jallcom.2010.04.097
Andreatta, F., Terryn, H., De Wit, J.H.W. (2004). Corrosion behaviour of different tempers of AA7075 aluminium alloy. Electrochim. Acta. 49 (17-18), 2851-2862. https://doi.org/10.1016/j.electacta.2004.01.046
Arunachalam, S.R., Dorman, S.E.G., Buckley, R.T., Conrad, N.A., Fawaz, S.A. (2018). Effect of electrical discharge machining on corrosion and corrosion fatigue behavior of aluminum alloys. Int. J. Fatigue 111, 44-53. https://doi.org/10.1016/j.ijfatigue.2018.02.005
Baker, H. (1992). ASM Handbook Volume 3: Alloy Phase Diagrams. ASM International.
Bilgiç, S. (2018). Galvanic Corrosion. The Eurasia Proceedings of Science, Technology, Engineering and Mathematics. SRES Publishing, pp. 259-262.
Buckley, D.H. (1981). Tribology Series. Elsevier.
Burt, V. (2015). Corrosion in the Petrochemical Industry. ASM International. https://doi.org/10.31399/asm.tb.cpi2.9781627082822
Çavdar, U., Taştan, M., Gökozan, H., Soy, G., Sarı Çavdar, P. (2021). Heat Treatment of 2024 and 5083 Aluminum Materials by Induction, a Competitive Method, and Cost Analysis. J. Inorg. Organomet. Polym. 31, 1754-1763. https://doi.org/10.1007/s10904-020-01813-1
Chen, G.S., Gao, M., Wei, R.P. (1996). Microconstituent-induced pitting corrosion in aluminum alloy 2024-T3. Corrosion 52 (1), 8-15. https://doi.org/10.5006/1.3292099
De Mello, J.D.B., Labiapari, W.S., Ardila, M.A.N., Oliveira, S.A.G., Costa, H.L. (2017). Strain hardening: can it affect abrasion resistance?. Tribol. Lett. 65 (2), 67. https://doi.org/10.1007/s11249-017-0850-8
Gharavi, F., Matori, K.A., Yunus, R., Othman, N.K., Fadaeifard, F. (2015). Corrosion behavior of Al6061 alloy weldment produced by friction stir welding process. J. Mater. Res. Technol. 4 (3), 314-322. https://doi.org/10.1016/j.jmrt.2015.01.007
Hussey, B., Wilson, J. (1998). Light Alloys: Directory and Databook. Chapman & Hall. https://doi.org/10.1007/978-1-4615-5777-7
Kaçar, H., Atik, E., Meriç, C. (2003). The effect of precipitation-hardening conditions on wear behaviours at 2024 aluminium wrought alloy. J. Mater. Process. Tech. 142 (3), 762-766. https://doi.org/10.1016/S0924-0136(03)00642-3
Kaczmar, J.W., Naplocha, K. (2010). Wear behaviour of composite materials based on 2024 Al-alloy reinforced with δ alumina fibres. J. Achiev. Mater. Manuf. Eng. 43 (1), 88-93.
Kang, J., Fu, R.D., Luan, G.H., Dong, C.L., He, M. (2010). In-situ investigation on the pitting corrosion behavior of friction stir welded joint of AA2024-T3 aluminium alloy. Corros. Sci. 52 (2), 620-626. https://doi.org/10.1016/j.corsci.2009.10.027
Krishna, K.G., Das, G., Venkateswarlu, K., Kumar, K.H. (2017). Studies on Aging and Corrosion Properties of Cryorolled Al-Zn-Mg-Cu (AA7075) Alloy. Trans. Indian Inst. Met. 70 (3), 817-825. https://doi.org/10.1007/s12666-017-1064-3
Liao, C.M., Olive, J.M., Gao, M., Wei, R.P. (1998). In-situ monitoring of pitting corrosion in aluminum alloy 2024. Corrosion 54 (6), 451-458. https://doi.org/10.5006/1.3284873
Lindroos, M., Valtonen, K., Kemppainen, A., Laukkanen, A., Holmberg, K., Kuokkala, V.T. (2015). Wear behavior and work hardening of high strength steels in high stress abrasion. Wear 322-323, 32-40. https://doi.org/10.1016/j.wear.2014.10.018
Liu, Y., Mol, J.M.C., Janssen, G.C.A.M. (2016). Combined Corrosion and Wear of Aluminium Alloy 7075-T6. J. Bio. Tribo. Corros. 2 (2), 2-9. https://doi.org/10.1007/s40735-016-0042-3
Menan, F., Henaff, G. (2009). Influence of frequency and exposure to a saline solution on the corrosion fatigue crack growth behavior of the aluminum alloy 2024. Int. J. Fatigue. 31 (11-12), 1684-1695. https://doi.org/10.1016/j.ijfatigue.2009.02.033
Meyveci, A., Karacan, İ., Durmuş, H., Çaligülü, U. (2009). Using of Artificial Neural Networks For Modelling Wear Behaviour Of Aged 2024 and 6063 Aluminium Alloy. Journal of Yaşar University 4 (13), 2062-2077. https://dergipark.org.tr/tr/download/article-file/179224.
Meyveci, A., Karacan, İ., Çaligülü, U., Durmuş, H. (2010). Pin-on-disc characterization of 2xxx and 6xxx aluminium alloys aged by precipitation age hardening. J. Alloys Compd. 491 (1-2), 278-283. https://doi.org/10.1016/j.jallcom.2009.10.142
Meyveci, A., Karacan, İ., Fırat, E.H., Çaligülü, U., Durmuş, H. (2011). Study of wear of aged aluminum alloys 2XXX and 6XXX within the manova statistical analysis. Met. Sci. Heat. Treat. 53 (3), 173-175. https://doi.org/10.1007/s11041-011-9363-5
Meyveci, A., Karacan, İ., Durmuş, H., Çaligülü, U. (2012). Artificial Neural Network (ANN) Approach to Hardness Prediction of Aged Aluminium 2024 and 6063 Alloys. Mater. Test. 54 (1), 36-40. https://doi.org/10.3139/120.110290
Mishra, A.K., Balasubramaniam, R. (2007). Corrosion inhibition of aluminum alloy AA 2014 by rare earth chlorides. Corros. Sci. 49 (3), 1027-1044. https://doi.org/10.1016/j.corsci.2006.06.026
Sadeler, R., Totik, Y., Gavgali, M., Kaymaz, I. (2004). Improvements of fatigue behaviour in 2014 Al alloy by solution heat treating and age-hardening. Mater. Design 25 (5), 439-445. https://doi.org/10.1016/j.matdes.2003.12.003
Staley, J.T. (2016). Corrosion of Aluminium Aerospace Alloys. Mater. Sci. Forum 877, 485-491.https://doi.org/10.4028/www.scientific.net/MSF.877.485
Sun, H.T., Wang, J., Shen, G.Z., Hu, P. (2013). Application of warm forming aluminum alloy parts for automotive body based on impact. Int. J. Automot. Technol. 14 (4), 605-610. https://doi.org/10.1007/s12239-013-0065-4
Tariq, F., Naz, N., Baloch, R.A. (2012). Characterization of material properties of 2xxx series al-alloys by non destructive testing techniques. J. Nondestruct. Eval. 31 (1), 17-33. https://doi.org/10.1007/s10921-011-0117-5
Taştan, M., Gökozan, H., Sarı Çavdar, P., Soy, G., Çavdar, U. (2019). Analysis of artificial aging with induction and energy costs of 6082 Al and 7075 Al materials. Rev. Metal. 55 (1), e137. https://doi.org/10.3989/revmetalm.137
Totten, G.E., Tiryakioglu, M., Kessler, O. (2018). Encyclopedia of Aluminum and Its Alloys. CRC Press. https://doi.org/10.1201/9781351045636
Vieira, A.C., Pinto, A.M., Rocha, L.A., Mischler, S. (2011). Effect of Al2Cu precipitates size and mass transport on the polarisation behaviour of age-hardened Al-Si-Cu-Mg alloys in 0.05 M NaCl. Electrochim. Acta 56 (11), 3821-3828. https://doi.org/10.1016/j.electacta.2011.02.044
Wang, S.C., Starink, M.J. (2005). Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li) based alloys. Int. Mater. Rev. 50 (4), 193-215. https://doi.org/10.1179/174328005X14357
Yasakau, K.A., Zheludkevich, M.L., Lamaka, S.V., Ferreira, M.G.S. (2007). Role of intermetallic phases in localized corrosion of AA5083. Electrochim. Acta 52 (27), 7651-7659. https://doi.org/10.1016/j.electacta.2006.12.072
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.