Cinética de engrosamiento de precipitados coherentes en la aleación Fe-10 % Ni-15 % Al

Autores/as

  • N. Cayetano-Castro Instituto Politécnico Nacional, ESIQIE-DIM
  • H. J. Dorantes-Rosales Instituto Politécnico Nacional, ESIQIE-DIM
  • V. M. López-Hirata Instituto Politécnico Nacional, ESIQIE-DIM
  • J. J. Cruz-Rivera Facultad de Ingeniería-Instituto de Metalurgia UASLP
  • J. Moreno-Palmerin Instituto Politécnico Nacional, ESIQIE-DIM
  • J. L. González-Velázquez Instituto Politécnico Nacional, ESIQIE-DIM

DOI:

https://doi.org/10.3989/revmetalm.2008.v44.i2.104

Palabras clave:

Engrosamiento, Transformaciones de fase, Aleación Fe-Ni-Al, Precipitados coherentes, Envejecido

Resumen


La cinética de engrosamiento y la evolución morfológica de precipitados coherentes β’ (Fe, Ni)Al en una matriz ferrítica se estudió en la aleación Fe-10 % Ni-15 % Al. Se solubilizaron muestras a 1.100 °C por 24, y posteriormente, se envejecieron a 750, 850 y 920 °C por diferentes tiempos. Los resultados de DRX, MEB y MET mostraron la descomposición, αsss → α + β, durante su envejecido. La distribución de precipitados dentro del grano cambia, gradualmente, de aleatoria a un alineamiento preferencial sobre las direcciones cristalográficas <100> de la matriz. Asimismo, la evolución morfológica de los precipitados fue: esféricos → cúbicos → paralelepípedos → placas. La variación del tamaño de partícula, r3, y la densidad de precipitados en función del tiempo se comportan linealmente, como lo predice la teoría de Lifshitz, Slyosov y Wagner (LSW) para el engrosamiento controlado por difusión. La cinética de crecimiento (K) se incrementó a temperaturas de envejecido mayores. La energía de activación para el proceso de engrosamiento fue de alrededor de 220 kJ/mol.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

[1] M. Doi, Prog. Mater. Sci. 40 (1996) 79-180. doi:10.1016/0079-6425(96)00001-1

[2] A. Artigas, D. Celentano Y A. Monsalve, Rev. Metal. Madrid 41 (2005) 340-350.

[3] V. Avaithyanathan y L.Q. Chen, Acta Mater. 50 (2002) 4.061-4.073.

[4] M. Doi, Mater. Trans. 33 (1992) 637-6499.

[5] P.W. Voorhees, Annu. Rev. Mater. Sci. 22 (1992) 197-215.

[6] A. Baldan, J. Mater. Sci. 37 (2002) 2.171-2.202.

[7] A. D. Brailsford y P. Wynblatt, Acta Mater. 27 (1979) 489-497. doi:10.1016/0001-6160(79)90041-5

[8] C.J. Kuehmann y P.W. Voorhees, Metall. Mater. Trans. A 27 (1996) 937-943. doi:10.1007/BF02649761

[9] W. Sun, Acta Mater. 53 (2005) 3.329-3334.

[10] I. M. Lifshitz y V. V. Slyozov, J. Phys. Chem. Solids, 19 (1961) 35-50. doi:10.1016/0022-3697(61)90054-3

[11] C. Wagner, Z. Electrochem. 65 (1961) 581-591.

[12] D.M. Kim y A.J. Ardell, Acta Mater. 55 (2003) 4.073-4.082.

[13] A.J. Ardell y V. Ozolins, Nature Materials 4 (2005) 309-315.

[14] A.J. Ardell, J. Eur. Ceram. Soc. 19 (1999) 2.217-2.231.

[15] A.C. Lund y P.W. Voorhees, Acta Mater. 50 (2002) 2.085-2.098.

[16] V.A. Snyder, J. Alkemper y P. W. Voorhees, Acta Mater. 49 (2001) 699-709. doi:10.1016/S1359-6454(00)00342-6

[17] D.M. Kim, A.J. Ardell, Scripta Mater. 43 (2000) 381-384. doi:10.1016/S1359-6462(00)00439-5

[18] Y. Ma y A.J. Ardell, Scripta. Mater. 52 (2005) 1.335-1.340.

[19] J. Naser, J.E. Smith Jr. y A.K. Kuruvilla, J. Mater. Sci. 33 (1998) 5.573-5.580.

[20] A. Baldan, J. Mater. Sci. 37 (2002) 2.379-2.405.

[21] C. Stallybrass, A. Schineider y G. Sauthoff, Intermetallics 13 (2005) 1.263-1.268.

[22] A. Garcia-Escorial, B. Torres, M. Lieblich y J. Ibañez, Rev. Metal. Madrid 37 (2001) 225-229.

[23] M. Rudy y G. Sauthoff, Mat. Sci. Eng. 81 (1986) 525-530. doi:10.1016/0025-5416(86)90289-2

[24] H. Bei y E.P. George, Acta Mater. 53 (2005) 69-77. doi:10.1016/j.actamat.2004.09.003

[25] Z. Guo, W. Sha y D. Vaumousse, Acta Mater. 51 (2003) 101-116. doi:10.1016/S1359-6454(02)00353-1

[26] V. M. López H, Ph. D. Thesis, Tohoku University, Japón, 1992.

[27] L. Ratke y P.W. Voorhees, Growth and Coarsening, Springer-Verlag, Berlin Heidelberg New York, 2002, p. 145.

[28] A. C. Lund y P.W. Voorhees, Acta Mater. 50 (2002) 2.585-2.298.

[29] htpp:/inaba.nims.go.jp/diff/DIF_Oikawa/DIF3/MF /Al.html.

[30] G. Kostorz, Phase Transformations in Materials, Wiley-VCH, Federal Republic of Germany, 2001, p. 371

Descargas

Publicado

2008-04-30

Cómo citar

Cayetano-Castro, N., Dorantes-Rosales, H. J., López-Hirata, V. M., Cruz-Rivera, J. J., Moreno-Palmerin, J., & González-Velázquez, J. L. (2008). Cinética de engrosamiento de precipitados coherentes en la aleación Fe-10 % Ni-15 % Al. Revista De Metalurgia, 44(2), 162–169. https://doi.org/10.3989/revmetalm.2008.v44.i2.104

Número

Sección

Artículos

Artículos más leídos del mismo autor/a