A galvanic corrosion study of brass/stainless steel and brass/cast iron couples

Authors

  • M. Ohanian Núcleo Interdisciplinario de Ingeniería Electroquímica, Universidad de la República
  • V. Díaz Núcleo Interdisciplinario de Ingeniería Electroquímica, Universidad de la República
  • M. Corengia Núcleo Interdisciplinario de Ingeniería Electroquímica, Universidad de la República
  • C. F. Zinola Núcleo Interdisciplinario de Ingeniería Electroquímica, Universidad de la República

DOI:

https://doi.org/10.3989/revmetalm.1047

Keywords:

Galvanic corrosion, Brass, Copper, Zinc, Dealloying

Abstract


Corrosion attack in heat exchanger systems is a topic of main interest for the maintenance in each industrial plant. These are multigalvanic systems with particular geometric and fluidodynamic complexity. Corrosive damages include zinc selective dealeation in copper alloys. In order to explain zinc dealeation attack, this paper deals with laboratory scale testing, characterization and interactions between two copper and zinc alloys (Yellow brass –UNS C268– and Admiralty brass –UNS C443–) compared to AISI 316 stainless steel and cast iron. The tests were performed at 20 °C in 1.5 % NaCl and 1.5 % Na2SO4 solutions, pH 8 and each material was characterized by potentiodynamic sweeps. The couples are analyzed by studying transient galvanic currents. We conclude about the cause of the analyzed pathology, brass protection potential ranges and its coupling compatibility with other metals.

Downloads

Download data is not yet available.

References

[1] A. Duran, J.L. Pérez-Rodríguez, L.K. Herrera, M.C. Jiménez-de-Haro, M.D. Robador, A. Justo, J.M. Blanes y J.C. Pérez-Ferrer, Rev. Metal. Madrid 44 (2008) 85-91.

[2] D. M. Bastidas, I. Cayuela and J. M. Bastidas, Rev. Metal. Madrid 42 (2006) 367-381.

[3] R. K. Pandey, Eng. Fail. Anal., 13 (2006) 739-746. http://dx.doi.org/10.1016/j.engfailanal.2005.02.016

[4] J. A. Beavers, A. K. Agrawal and W. E Berry, J. Materials for Energy Systems, 4 (3) (1982) 168-182. http://dx.doi.org/10.1007/BF02833409

[5] J.R. Scully, H.P. Hack (Eds.), Galvanic Corrosion, ASTM, 2002, pp. 136-157.

[6] R. Francis, Br. Corros. J. 22 (1987) 199-201.

[7] W. Kirk, http://www.copper.org/applications/cuni/txt_condenser_heat_exch_syst.html

[8] J.R. Scully, H.P. Hack (Eds.), Galvanic Corrosion, ASTM, 2002, pp. 1-12.

[9] B. Wallén and T. Andersson, ACOM, No 2, 1987, pp. 1-7.

[10] A. M. Shams El Din, J. M. Abd El Kader and M. M. Badran, Br. Corros. J. 16 (1981) 32-37.

[11] M.E. El-Dahshan, A.M. Shams El Din and H.H. Haggag, Desalination 142 (2002) 161-169. http://dx.doi.org/10.1016/S0011-9164(01)00435-0

[12] I. K. Marshakov; Protection of Metals 41 (2005) 227-233. http://dx.doi.org/10.1007/s11124-005-0031-2

[13] Hodgkiess and C. W. Lim, Corros. Sci. 34 (1993) 269-283.

[14] H. M. Herro and R. D. Port, The Nalco Guide to Cooling Water System Failure Analysis, Nalco Chemical Company, Mc Graw Hill, EE.UU., 1993, pp. 295-311.

[15] L. L. Shreir, R. A. Jarman, G. T. Burstein, Corrosion, Butterworth Heinemann, Tercera Ed., Oxford, Gran Bretaña, 1995, pp. 4:38-4:75

[16] Z. Xia and Z. Szklarska-Smialowska; Corrosion (46) 85-88.

[17] A. M. Shams El Din; Desalination 93 (1993) 487-498. http://dx.doi.org/10.1016/0011-9164(93)80124-6

[18] A. M. Shams El Din; Desalination 93 (1993) 499-516. http://dx.doi.org/10.1016/0011-9164(93)80125-7

[19] P. R. Roberge, Handbook of Corrosion Engineering; Mc Graw Hill, 1999, pp. 1.072-1.074.

[20] M. Kabasakaloglu, T. Kiyac, O. Sendil and A. Asan, Appl. Surf. Sci. 193 (2002) 167-174 http://dx.doi.org/10.1016/S0169-4332(02)00258-1

[21] F. M. Al-Kharaffi, B. G. Ateya and R. M. Abd Allah, J. Appl. Electrochem. 34 (2004) 47-53. http://dx.doi.org/10.1023/B:JACH.0000005616.41240.d0

[22] K. Balakrishan and V.K. Venkatesan, Electrochimica Acta 24 (1979) 131-138. http://dx.doi.org/10.1016/0013-4686(79)80015-8

[23] B. S. Kim, T. Piao, S. N. Hoier and S. M. Park, Corros. Sci. 37 (1995) 557-570. http://dx.doi.org/10.1016/0010-938X(94)00147-X

[24] V. Yu. Kondrashin, Protection of Metals 41 (2005) 138-145. http://dx.doi.org/10.1007/s11124-005-0019-y

[25] J. A. González, Teoría y Práctica de la Lucha Contra la Corrosión, CENIM, España, 1984, pp. 30-33.

[26] A. U. Malik, N. A. Siddiki and I. N. Andijani, Desalination 97 (1994) 189-197. http://dx.doi.org/10.1016/0011-9164(94)00086-7

[27] H. A. Videla, International Biodeterioration & Biodegradation (1994) 245-257. http://dx.doi.org/10.1016/0964-8305(94)90086-8 PMCid:373060

[28] R. F. North and M. J. Pryor, Corros. Sci. 8 (1968) 149-157. http://dx.doi.org/10.1016/S0010-938X(68)80197-0

[29] J. M. Popplewell, R. J. Hart and J. A. Ford, Corros. Sci. 13 (1973) 295-309. http://dx.doi.org/10.1016/0010-938X(73)90007-3

[30] F. J. Presuel-Moreno, M. A. Jakab and J. R. Scully, J. Electrochem. Soc. 152 (2005) B376- B387. http://dx.doi.org/10.1149/1.1997165

[31] R. B. Faltermeier, Studies in Conservation, 44 (1998) 121-128. http://dx.doi.org/10.2307/1506724

[32] T. Kosec, I. Milosev and B. Pihlar, Appl. Surf. Sci., 253 (2007) 8.863-8.873.

[33] L.L. Shreir, R.A. Jarman and G.T. Burstein, Corrosion, Butterworth Heinemann, Tercera Ed., Oxford, Inglaterra, 1995, pp. 17:67 - 17:93.

Downloads

Published

2011-08-30

How to Cite

Ohanian, M., Díaz, V., Corengia, M., & Zinola, C. F. (2011). A galvanic corrosion study of brass/stainless steel and brass/cast iron couples. Revista De Metalurgia, 47(4), 319–328. https://doi.org/10.3989/revmetalm.1047

Issue

Section

Articles