Aceros avanzados de alta resistencia en la industria automovilística

Autores/as

  • J. Galán Department of Materials Science and Engineering, Ghent University
  • L. Samek Department of Materials Science and Engineering, Ghent University
  • P. Verleysen Department of Materials Science and Engineering, Ghent University
  • K. Verbeken Department of Materials Science and Engineering, Ghent University
  • Y. Houbaert Department of Materials Science and Engineering, Ghent University

DOI:

https://doi.org/10.3989/revmetalm.1158

Palabras clave:

Acero, Aceros de alta resistencia, Aceros avanzados de alta resistencia, Aceros de baja aleación, TRIP

Resumen


La industria del automóvil se enfrenta a una creciente demanda de vehículos de pasajeros más eficientes. Con el fin de disminuir el consumo de energía y la contaminación ambiental, el peso del vehículo tiene que ser reducido, al mismo tiempo que se garantizan altos niveles de seguridad. Ante esta situación, la elección de material se convierte en una decisión crucial en el diseño del vehículo. Como respuesta a las necesidades del sector automovilístico, nuevos aceros avanzados y de alta resistencia, han sido desarrollados por la industria siderúrgica. Dichos tipos de acero ofrecen un excelente equilibrio de precio, peso y propiedades mecánicas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

[1] G. Cole, A. Glove, R. Jeryan, and G. Davies, Steel World 2 (1997) 75-83.

[2] A. Jambor and M. Beyer, Mater. Des. 18 (1997) 203-209. http://dx.doi.org/10.1016/S0261-3069(97)00049-6

[3] J.L. Bast and J. Lehr, Heartland Policy Study 95 (2000) 1-69.

[4] J. Dargay and D. Gately, Transport. Res. a Pol. 33 (1999) 101-138.

[5] T. P. Wenzel and M. Ross, Accident Analysis and Prevention 37 (2005) 479-494. http://dx.doi.org/10.1016/j.aap.2004.08.002

[6] T. Klein, E. Hertz, and S. Borener, A collection of recent analyses of vehicle weight and safety, NHTSA DOT-HS-807 677, Washington, USA, 1991, pp. 1-23.

[7] Board on Energy and Environmental Systems, Effectiveness and Impact of Corporate Average Fuel Economy (CAFE) Standards, National Academy Press, Washington, USA, 2002, 184.

[8] W.C. Philips, Technische Mitteilungen ThyssenKrupp 4 (1999) 13-19.

[9] V. Flaxa and J. Shaw, Steel Grips 1 (2003) 255-261.

[10] B. Zuidema, S. Denner, B. Engl and JO. Sperle, SAE Techn. 42 (2001) 984-992.

[11] V.F. Zackay, D. Parker, D. Fahr, and R. Bush, Trans. ASM 60 (1967) 252-259.

[12] L. Barbe, K. Verbeken and W. Emiel, ISIJ Int. 46 (2006) 1251-1257. http://dx.doi.org/10.2355/isijinternational.46.1251

[13] J. Bouquerel, K. Verbeken, D. Krizan et al, Steel Res 79 (2008) 784-792

[14] B. Engl, T. Heller, and R. Kawalla, Technische Mitteilungen ThyssenKrupp 4 (1999) 20-25.

[15] P. Sriram, J. G. Speer, and D. K. Matlock, SAE Techn. paper, 25 (1999) 184-187.

[16] G. Vaubel, Stahl Eisen 117 (1997) 45-48.

[17] W. Bleck, Proc. Int. Conf. on TRIP-Aided High Strength Ferrous Alloys, B.C. De Cooman (Ed.), Wissenschaftsverlag Mainz Gmbh, Ghent, Belgium, 2002, pp. 13-23.

[18] F.P. Pleschiutschnigg, V.V. Jamnis, S.R. Talwar, A.K. Misra, R.P.V. Atluri, R.B. Singh, P. Shankar, R.K. Verma, R.K. Goyal, V.P. Mishra, B. Deepu, P. Meierling, and J. Pleschiutschnigg, Steel Grips 2 (2004) 171-176.

[19] E. Doege, S. Kulp, and C. Sunderkotter, Steel Res. 73 (2002) 303-308.

[20] T. Waterschoot, B. C. De Cooman, A. K. De and S. Vandeputte, Metall. Mater. Trans. A 34A (2003) 781-791.

[21] K. Sugimoto, M. Kobayashi, and S. Hashimoto, Metall. Mater. Trans. A 23 (1992) 3085-3091. http://dx.doi.org/10.1007/BF02646127

[22] K. Sugimoto, A. Nagasaka, M. Kobayashi, and S. Hashimoto, ISIJ Int. 39 (1999) 56-63. http://dx.doi.org/10.2355/isijinternational.39.56

[23] K. Sugimoto, M. Kobayashi, A. Nagasaka, and S. Hashimoto, ISIJ Int. 35 (1995) 1407-1414. http://dx.doi.org/10.2355/isijinternational.35.1407

[24] O. Matsumura, Y. Sakuma, Y. Ishii, and J. Zhao, ISIJ Int. 32 (1992) 1110-1116. http://dx.doi.org/10.2355/isijinternational.32.1110

[25] K. Sugimoto, M. Misu, M. Kobayashi, and H. Shirasawa, ISIJ Int. 33 (1993) 775-782. http://dx.doi.org/10.2355/isijinternational.33.775

[26] G. N. Haidemenopoulos, M. Grujicic, G. B. Olson, and M. Cohen, J. Alloy Compd. 220 (1995) 142-147.

[27] N. Murai, and T. Tsumura, J. Iron Steel I. 84 (1998) 446-451.

[28] O. Matsumura, Y. Sakuma, and H. Takechi, Trans. Iron Steel Inst. 27 (1987) 570-579. http://dx.doi.org/10.2355/isijinternational1966.27.570

[29] Y. Sakuma, O. Matsumura, and H. Takechi, Metall. Mater. Trans. A 22 (1991) 489-498. http://dx.doi.org/10.1007/BF02656816

[30] K. Sugimoto, N. Usui, M. Kobayashi, and S. Hashimoto, ISIJ Int. 32 (1992) 1311-1318. http://dx.doi.org/10.2355/isijinternational.32.1311

[31] P. J. Jacques, Curr. Opin. Solid St. M. 8 (2004) 259-265. http://dx.doi.org/10.1016/j.cossms.2004.09.006

[32] L. Samek, B. De Cooman, J. Van Slycken, P. Verleysen, and J. Degrieck, Proc. 6th Mesomechanics, Patras, Greece, 2004, G.C. Sih, Th. B. Kermanidis, SP. G. Pantelakis (Eds.), Elsevier, USA, 2004, pp. 120-128.

[33] L. Samek, B.C. De Cooman, J. Van Slycken, P. Verleysen, and J. Degrieck, Steel Res. Int. 75 (2004) 716-723.

[34] L. Samek, B.C. De Cooman, J. Van Slycken, P. Verleysen, and J. Degrieck, Proc. Int. Symp. on Transformation and Deformation Mechanisms in Advanced High-Strength Steels, Vancouver, Canada, M. Militzer W.J. Poole, E. Essadiqi (Eds.) 2003, pp. 77-91.

[35] J. Van Slycken, J. Bouquerel, P. Verleysen, K. Verbeken, J. Degrieck and Y. Houbaert, Proc. 6th Int. Conference on Processing and Manufacturing of Advanced Materials, Mater. Sci. Forum 638-642, Germany, 2009, T.Chandra, N.Wanderka, W.Reimers, M.Ionescu (Eds) Trans Tech Publications, Germany, 2010, pp. 3585-3590.

[36] R. Bode, M. Meurer, T. W. Schaumann, and W. Warnecke, Stahl Eisen 124 (2004) S19-S24.

[37] Y. Sakuma, D. K. Matlock, and G. Krauss, Metall. Mater. Trans. A (1992) 1221-1232. http://dx.doi.org/10.1007/BF02665053

[38] P. Jacques, X. Cornet, P. Harlet, J. Ladriere, and F. Delannay, Metall. Mater. Trans. A 29 (1998) 2383-2393. http://dx.doi.org/10.1007/s11661-998-0114-1

[39] D.C. Ludwingson, and J.A. Berger, J. Iron Steel I. 207 (1969) 63-69.

[40] G.B. Olson, and M. Cohen, Metall. Mater. Trans. A 6A (1975) 791-795. http://dx.doi.org/10.1007/BF02672301

[41] G. B. Olson, and M. Azrin, Metall. Mater. Trans. A 9 (1978) 713-721. http://dx.doi.org/10.1007/BF02659928

[42] J. G. Speer, F. C. Rizzo -Assunção, D. K. Matlock, and D. V. Edmonds, Mat. Res. 8 (2005) 417-423.

[43] M. Santofimia, L. Zhao, and J. Sietsma, Metall. Mater. Trans. A 42 (2011) 3620-3626. http://dx.doi.org/10.1007/s11661-011-0706-z

[44] L. Wang, and W. Feng, SAE Techn. paper, 439 (2010) 984-982.

[45] A. Wasilkowska, P. Tsipouridis, E. A. Werner, A. Pichler, and S. Traint, J. Mater. Process. Tech. 58 (2004) 633-636. http://dx.doi.org/10.1016/j.jmatprotec.2004.07.126

[46] H.H. Zou, L. Li, R.-Y. Fu, B.C. De Cooman, P. Wollants, X.-D. Zhu, and L. Wang, Proc. Int. Conf. on TRIP-Aided High Strength Ferrous Alloys, B.C. De Cooman (Ed.), Ghent, Belgium, 2002, pp. 317-320.

[47] J. Mahieu, J. Maki, B. C. De Cooman, and S. Claessens, Metall. Mater. Trans. A 33 (2002) 2573-2580. http://dx.doi.org/10.1007/s11661-002-0378-9

[48] K. Sugimoto and M. Kobayashi, Proc. Symp. High Strength Steels for Automotive Industry, 36th MWSP, Baltimore, MD, EE.UU. 1994, pp. 255-65.

[49] L. Samek, E. De Moor, J. Penning, and B. C. De Cooman, Metall. Mater. Trans. A 37A (2006) 109-124. http://dx.doi.org/10.1007/s11661-006-0157-0

Descargas

Publicado

2012-04-30

Cómo citar

Galán, J., Samek, L., Verleysen, P., Verbeken, K., & Houbaert, Y. (2012). Aceros avanzados de alta resistencia en la industria automovilística. Revista De Metalurgia, 48(2), 118–131. https://doi.org/10.3989/revmetalm.1158

Número

Sección

Artículos

Artículos más leídos del mismo autor/a