Desarrollo de las aleaciones de titanio y tratamientos superficiales para incrementar la vida útil de los implantes
DOI:
https://doi.org/10.3989/revmetalm.084Palabras clave:
Aleaciones β de titanio, Anodizado, Biocompatibilidad, Nanotubos, Osteointegración, Tratamientos superficiales, Tratamiento térmicoResumen
El envejecimiento de la población junto con el incremento de la esperanza de vida, obligan al desarrollo de prótesis que presenten un periodo de vida útil cada vez mayor. El éxito clínico de los implantes está basado en la consecución de la osteointegración. Por lo tanto, las prótesis metálicas necesitan disponer de una compatibilidad mecánica con el hueso que sustituyen, que se consigue mediante una combinación de bajo módulo elástico, alta resistencia a la rotura y a fatiga. La mejora, a corto y largo plazo, de la osteointegración es función de múltiples factores, de entre los cuales son de gran importancia su diseño macroscópico y dimensional, el material y la topografía superficial del implante. Este artículo se centra en resumir las ventajas que presentan el titanio y sus aleaciones para ser empleadas como biomateriales, y la evolución que han sufrido estas, en las últimas décadas, para mejorar su biocompatibilidad. En consecuencia, se ha recapitulado la evolución que han sufrido los implantes, resumiéndose a través de tres generaciones. En los últimos años se ha incrementado el interés en los tratamientos superficiales de las prótesis metálicas, con el objetivo de alcanzar una integración del tejido óseo duradera y en el menor tiempo posible. En este artículo se exponen varios tratamientos superficiales utilizados actualmente para modificar la rugosidad o para obtener recubrimientos superficiales; cabe destacar la oxidación electroquímica con tratamiento térmico, para modificar la estructura cristalina de los óxidos de titanio. Tras la revisión bibliográfica llevada a cabo para la redacción de este artículo, las aleaciones ? de titanio, con una superficie de nanotubos obtenida mediante oxidación electroquímica y una etapa posterior de tratamiento térmico para obtener una estructura cristalina, son la opción de futuro para mejorar la biocompatibilidad a largo plazo de las prótesis de titanio.
Descargas
Citas
Ahmed, T., Rack, H.J. (1998). Phase transformations during cooling in ?+? titanium alloys. Mat. Sci. Eng. A-Struct. 243 (1-2), 206–211. https://doi.org/10.1016/S0921-5093(97)00802-2
Anselme, K., Bigerelle, M., Noel, B., Dufresne, E., Judas, D., Iost, A., Hardouin, P. (2000). Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J. Biomed. Mater. Res. 49 (2), 155–166. https://doi.org/10.1002/(SICI)1097-4636(200002)49:2<155::AID-JBM2>3.0.CO;2-J
Bai, Y., Park, I.S., Park, H.H., Lee, M.H., Bae, T.S., Duncan, W., Swain, M. (2011). The effect of annealing temperatures on surface properties, hydroxyapatite growth and cell behaviors of TiO2 nanotubes. Surf. Interface Anal. 43 (6), 998–1005. https://doi.org/10.1002/sia.3683
Ban, S., Iwaya, Y., Kono, H., Sato, H. (2006). Surface modification of titanium by etching in concentrated sulfuric acid. Dent. Mater. 22 (12), 1115–1120. https://doi.org/10.1016/j.dental.2005.09.007 PMid:16375960
Bauer, S., Pittrof, A., Tsuchiya, H., Schmuki, P. (2011). Size-effects in TiO2 nanotubes: Diameter dependent anatase/rutile stabilization. Electrochem. Commun. 13 (6), 538–541. https://doi.org/10.1016/j.elecom.2011.03.003
Bayram, C., Demirbilek, M., Yalçin, E., Bozkurt, M., Do?an, M., Denkba?, E.B. (2014). Osteoblast response on co-modified titanium surfaces via anodization and electrospinning. Appl. Surf. Sci. 288, 143–148. https://doi.org/10.1016/j.apsusc.2013.09.168
Berger, S., Hahn, R., Roy, P., Schmuki, P. (2010). Self-organized TiO2 nanotubes: Factors affecting their morphology and properties. Phys. Status Solidi B 247 (10), 2424–2435. https://doi.org/10.1002/pssb.201046373
Berger, S., Albu, S.P., Schmidt-Stein, F., Hildebrand, H., Schmuki, P., Hammond, J.S., Reichlmaier, S. (2011). The origin for tubular growth of TiO2 nanotubes: A fluoride rich layer between tube-walls. Surf. Sci. 605 (19-20), L57–L60. https://doi.org/10.1016/j.susc.2011.06.019
Bjursten, L.M., Rasmusson, L., Oh, S., Smith, G.C., Brammer, K.S., Jin, S. (2010). Titanium dioxide nanotubes enhance bone bonding in vivo. J. Biomed. Mater. Res.- A 92A (3), 1218–1224.
Brammer, K.S., Oh, S., Cobb, C.J., Bjursten, L.M., Heyde, H. Van Der, Jin, S. (2009). Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomater. 5 (8), 3215–3223. https://doi.org/10.1016/j.actbio.2009.05.008 PMid:19447210
Browne, M., Gregson, P.J. (2000). Effect of mechanical surface pretreatment on metal ion release. Biomaterials 21 (4), 385–392. https://doi.org/10.1016/S0142-9612(99)00200-8
Çali?kan, N., Bayram, C., Erdal, E., Karahalilo?lu, Z., Denkba?, E.B. (2014). Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion. Mat. Sci. Eng. C 35, 100–105. https://doi.org/10.1016/j.msec.2013.10.033 PMid:24411357
Chlebus, E., Ku?nicka, B., Kurzynowski, T., Dyba?a, B. (2011). Microstructure and mechanical behaviour of Ti-6Al-7Nb alloy produced by selective laser melting. Mater. Charact. 62 (5), 488–495. https://doi.org/10.1016/j.matchar.2011.03.006
Choe, H.C., Kim, W.G., Jeong, Y.H. (2010). Surface characteristics of HA coated Ti-30Ta-xZr and Ti-30Nb-xZr alloys after nanotube formation. Surf. Coat. Tech. 205 (Suppl. 1), S305–S311. https://doi.org/10.1016/j.surfcoat.2010.08.020
Cochran, D.L., Schenk, R.K., Lussi, A., Higginbottom, F.L., Buser, D. (1998). Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: A histometric study in the canine mandible. J. Biomed. Mater. Res. 40 (1), 1–11. https://doi.org/10.1002/(SICI)1097-4636(199804)40:1<1::AID-JBM1>3.0.CO;2-Q
Cremasco, A., Osório, W.R., Freire, C.M., Garcia, A., Caram, R. (2008). Electrochemical corrosion behavior of a Ti-35Nb alloy for medical prostheses. Electrochim. Acta 53 (14), 4867–4874. https://doi.org/10.1016/j.electacta.2008.02.011
Cremasco, A., Messias, A.D., Esposito, A.R., Duek, E.A.D.R., Caram, R. (2011). Effects of alloying elements on the cytotoxic response of titanium alloys. Mat. Sci. Eng. C 31 (5), 833–839. https://doi.org/10.1016/j.msec.2010.12.013
Das, K., Bose, S., Bandyopadhyay, A. (2007). Surface modifications and cell-materials interactions with anodized Ti. Acta Biomater. 3 (4), 573–585. https://doi.org/10.1016/j.actbio.2006.12.003 PMid:17320494
Das, K., Bose, S., Bandyopadhyay, A. (2009). TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction. J. Biomed. Mater. Res.-A 90A (1), 225–237. https://doi.org/10.1002/jbm.a.32088 PMid:18496867
Diniz, M.G., Soares, G.A., Coelho, M.J., Fernandes, M.H. (2002). Surface topography modulates the osteogenesis in human bone marrow cell cultures grown on titanium samples prepared by a combination of mechanical and acid treatments. J. Mater. Sci. - Mater. M. 13 (4), 421–432. https://doi.org/10.1023/A:1014357122284
Duraccio, D., Mussano, F., Faga, M.G. (2015). Biomaterials for dental implants: current and future trends. J. Mater. Sci. 50 (14), 4779–4812. https://doi.org/10.1007/s10853-015-9056-3
Eisenbarth, E., Velten, D., Müller, M., Thull, R., Breme, J. (2004). Biocompatibility of ?-stabilizing elements of titanium alloys. Biomaterials 25 (26), 5705–5713. https://doi.org/10.1016/j.biomaterials.2004.01.021 PMid:15147816
Ferreira, C.P., Gonçalves, M.C., Caram, R., Bertazzoli, R., Rodrigues, C.A. (2013). Effects of substrate microstructure on the formation of oriented oxide nanotube arrays on Ti and Ti alloys. Appl. Surf. Sci. 285 (Part B), 226–234. https://doi.org/10.1016/j.apsusc.2013.08.041
Han, C.M., Kim, H.E., Koh, Y.H. (2014). Creation of hierarchical micro/nano-porous TiO2 surface layer onto Ti implants for improved biocompatibility. Surf. Coat. Tech. 251, 226–231. https://doi.org/10.1016/j.surfcoat.2014.04.030
Hao, Y.Q., Li, S.J., Hao, Y.L., Zhao, Y.K., Ai, H.J. (2013). Effect of nanotube diameters on bioactivity of a multifunctional titanium alloy. Appl. Surf. Sci. 268, 44–51. https://doi.org/10.1016/j.apsusc.2012.11.142
Iijima, D., Yoneyama, T., Doi, H., Hamanaka, H., Kurosaki, N. (2003). Wear properties of Ti and Ti-6Al-7Nb castings for dental prostheses. Biomaterials 24 (8), 1519–1524. https://doi.org/10.1016/S0142-9612(02)00533-1
Jeong, Y.H., Kim, W.G., Choe, H.C., Brantley, W.A. (2014a). Control of nanotube shape and morphology on Ti–Nb(Ta)–Zr alloys by varying anodizing potential. Thin Solid Films 572, 105–112. https://doi.org/10.1016/j.tsf.2014.09.057
Jeong, Y.H., Kim, E.J., Brantley, W.A., Choe, H.C. (2014b). Morphology of hydroxyapatite nanoparticles in coatings on nanotube-formed Ti-Nb-Zr alloys for dental implants. Vacuum 107, 297–303. https://doi.org/10.1016/j.vacuum.2014.03.004
Kim, W.G., Choe, H.C., Brantley, W.A. (2011). Nanostructured surface changes of Ti-35Ta-xZr alloys with changes in anodization factors. Thin Solid Films 519 (15), 4663–4667. https://doi.org/10.1016/j.tsf.2011.01.013
Kim, E.S., Jeong, Y.H., Choe, H.C., Brantley, W.A. (2013). Formation of titanium dioxide nanotubes on Ti-30Nb-xTa alloys by anodizing. Thin Solid Films 549, 141–146. https://doi.org/10.1016/j.tsf.2013.08.058
Kuroda, D., Niinomi, M., Morinaga, M., Kato, Y., Yashiro, T. (1998). Design and mechanical properties of new ? type titanium alloys for implant materials. Mat. Sci. Eng. A-Struct. 243 (1-2), 244–249. https://doi.org/10.1016/S0921-5093(97)00808-3
Le Guehennec, L., Soueidan, A., Layrolle, P., Amouriq, Y. (2007). Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater. 23 (7), 844–854. https://doi.org/10.1016/j.dental.2006.06.025 PMid:16904738
Le Guehennec, L., Lopez-Heredia, M.-A., Enkel, B., Weiss, P., Amouriq, Y., Layrolle, P. (2008). Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomater. 4 (3), 535–543. https://doi.org/10.1016/j.actbio.2007.12.002 PMid:18226985
Lee, K., Jeong, Y.H., Ko, Y.M., Choe, H.C., Brantley, W.A. (2013). Hydroxyapatite coating on micropore-formed titanium alloy utilizing electrochemical deposition. Thin Solid Films 549, 154–158. https://doi.org/10.1016/j.tsf.2013.09.002
Lee, W.S., Chen, C.W. (2013). High temperature impact properties and dislocation substructure of Ti-6Al-7Nb biomedical alloy. Mat. Sci. Eng. A-Struct. 576, 91–100. https://doi.org/10.1016/j.msea.2013.03.088
Li, D., Ferguson, S.J., Beutler, T., Cochran, D.L., Sittig, C., Hirt, H.P., Buser, D. (2002). Biomechanical comparison of the sandblasted and acid-etched and the machined and acid-etched titanium surface for dental implants. J. Biomed. Mater. Res.-A 60 (2), 325–332. https://doi.org/10.1002/jbm.10063 PMid:11857440
Long, M., Rack, H.J. (1998). Titanium alloys in total joint replacement--a materials science perspective. Biomaterials 19 (18), 1621–1639. https://doi.org/10.1016/S0142-9612(97)00146-4
Lütjering, G. (1998). Influence of processing on microstructure and mechanical properties of (?+?) titanium alloys. Mat. Sci. Eng. A-Struct. 243 (1-2), 32–45. https://doi.org/10.1016/S0921-5093(97)00778-8
Mendonça, G., Mendonça, D.B.S., Aragão, F.J.L., Cooper, L.F. (2008). Advancing dental implant surface technology – From micron-to nanotopography. Biomaterials 29 (28), 3822–3835. https://doi.org/10.1016/j.biomaterials.2008.05.012 PMid:18617258
Minagar, S., Berndt, C.C., Wang, J., Ivanova, E., Wen, C. (2012). A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater. 8 (8), 2875–2888. https://doi.org/10.1016/j.actbio.2012.04.005 PMid:22542885
Minagar, S., Wang, J., Berndt, C.C., Ivanova, E.P., Wen, C. (2013). Cell response of anodized nanotubes on titanium and titanium alloys. J. Biomed. Mater. Res.-A 101A (9), 2726–2739. https://doi.org/10.1002/jbm.a.34575 PMid:23436766
Mîndroiu, M., Pirvu, C., Ion, R., Demetrescu, I. (2010). Comparing performance of nanoarchitectures fabricated by Ti6Al7Nb anodizing in two kinds of electrolytes. Electrochim. Acta 56 (1), 193–202. https://doi.org/10.1016/j.electacta.2010.08.100
National Center for Health Statistics (2015). Health, United States, With Special Feature on Adults Aged 55-64, DHHS Publication Nº 2015-1232.
Nguyen, T.D.T., Park, I.S., Lee, M.H., Bae, T.S. (2013). Enhanced biocompatibility of a pre-calcified nanotubular TiO2 layer on Ti-6Al-7Nb alloy. Surf. Coat. Tech. 236, 127–134. https://doi.org/10.1016/j.surfcoat.2013.09.038
Niinomi, M. (1998). Mechanical properties of biomedical titanium alloys. Mat. Sci. Eng. A-Struct. 243 (1-2), 231–236. https://doi.org/10.1016/S0921-5093(97)00806-X
Niinomi, M. (2008). Mechanical biocompatibilities of titanium alloys for biomedical applications. J. Mech. Behav. Biomed. Mater. 1 (1), 30–42. https://doi.org/10.1016/j.jmbbm.2007.07.001 PMid:19627769
Okazaki, Y., Gotoh, E. (2005). Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 26 (1), 11–21. https://doi.org/10.1016/j.biomaterials.2004.02.005 PMid:15193877
Ossowska, A., Sobieszczyk, S., Supernak, M., Zielinski, A. (2014). Morphology and properties of nanotubular oxide layer on the "Ti–13Zr–13Nb" alloy. Surf. Coat. Tech. 258, 1239–1248. https://doi.org/10.1016/j.surfcoat.2014.06.054
Pan, J., Thierry, D., Leygraf, C. (1996). Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochim. Acta 41 (7-8), 1143–1153. https://doi.org/10.1016/0013-4686(95)00465-3
Park, I.-S., Bae, T.-S. (2014). The bioactivity of enhanced Ti-32Nb-5Zr alloy with anodic oxidation and cyclic calcification. Int. J. Precis. Eng. Man. 15 (8), 1595–1600 https://doi.org/10.1007/s12541-014-0508-5
Pypen, C.M.J.M., Plenk, H., Ebel, M.F., Svagera, R., Wernisch, J. (1997). Characterization of microblasted and reactive ion etched surfaces on the commercially pure metals niobium, tantalum and titanium. J. Mater. Sci. - Mater. M. 8 (12), 781–784. https://doi.org/10.1023/A:1018568830442
Reyes-Coronado, D., Rodríguez-Gattorno, G., Espinosa-Pesqueira, M.E., Cab, C., de Coss, R., Oskam, G. (2008). Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19 (14), 145605. https://doi.org/10.1088/0957-4484/19/14/145605 PMid:21817764
Ryan, G., Pandit, A., Apatsidis, D.P. (2006). Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27 (13), 2651–2670. https://doi.org/10.1016/j.biomaterials.2005.12.002 PMid:16423390
Salou, L., Hoornaert, A., Louarn, G., Layrolle, P. (2015). Enhanced osseointegration of titanium implants with nanostructured surfaces: An experimental study in rabbits. Acta Biomater. 11, 494–502. https://doi.org/10.1016/j.actbio.2014.10.017 PMid:25449926
Semiatin, S.L., Ivasishin, O.M., Markovsky, P.E. Shevchenko, S.V., Ulshin, S.V. (2002). Grain growth and texture evolution in Ti Á 6Al Á 4V during beta annealing under continuous heating conditions. Mat. Sci. Eng. A-Struct. 337 (1-2), 88–96. https://doi.org/10.1016/S0921-5093(01)01990-6
Sieniawski, J., Filip, R., Ziaja, W. (1997). The effect of microstructure on the mechanical properties of two-phase titanium alloys. Mater. Design 18 (4-6), 361–363. https://doi.org/10.1016/S0261-3069(97)00087-3
Sista, S., Nouri, A., Li, Y., Wen, C., Hodgson, P.D., Pande, G. (2013). Cell biological responses of osteoblasts on anodized nanotubular surface of a titanium-zirconium alloy. J. Biomed. Mater. Res.-A 101 (12), 3416–3430. https://doi.org/10.1002/jbm.a.34638 PMid:23559548
Tan, A.W., Pingguan-Murphy, B., Ahmad, R., Akbar, S.A. (2012). Review of titania nanotubes: Fabrication and cellular response. Ceram. Int. 38 (6), 4421–4435. https://doi.org/10.1016/j.ceramint.2012.03.002
Xie, Y., Ao, H., Xin, S., Zheng, X., Ding, C. (2014). Enhanced cellular responses to titanium coating with hierarchical hybrid structure. Mat. Sci. Eng. C 38, 272–277. https://doi.org/10.1016/j.msec.2014.02.004 PMid:24656378
Yao, C., Webster, T.J. (2009). Prolonged antibiotic delivery from anodized nanotubular titanium using a co-precipitation drug loading method. J. Biomed. Mater. Res.-B 91B (2), 587–595. https://doi.org/10.1002/jbm.b.31433 PMid:19582847
Yu, W.Q, Zhang, Y.L., Jiang, X.Q., Zhang, F.Q. (2010). In vitro behavior of MC3T3-E1 preosteoblast with different annealing temperature titania nanotubes. Oral Dis. 16 (7), 624–630. https://doi.org/10.1111/j.1601-0825.2009.01643.x PMid:20604877
Zhao, Y., Xiong, T., Huang, W. (2010). Effect of heat treatment on bioactivity of anodic titania films. Appl. Surf. Sci. 256 (10), 3073–3076. https://doi.org/10.1016/j.apsusc.2009.11.075
th CEIES Seminar (2002). Active ageing statistics, ISBN: 92-894-3296-9, Ed. European Commission, La Haya. http://bookshop.europa.eu/en/18th-ceies-seminar-pbKSPB02006/.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.