Comportamiento del flujo de esfuerzo y análisis microestructural de compuestos de matriz de aluminio deformados en caliente y reforzados con partículas de la aleación con memoria de forma CuZnAlNi

Autores/as

  • Kenneth K. Alaneme Materials Design and Structural Integrity Research Group, Department of Metallurgical and Materials Engineering, Federal University of Technology - Department of Metallurgical and Materials Engineering, Federal University of Technology https://orcid.org/0000-0002-1582-4702
  • Michael O. Bodunrin Materials Design and Structural Integrity Research Group, Department of Metallurgical and Materials Engineering, Federal University of Technology - Department of Metallurgical and Materials Engineering, Federal University of Technology - School of Chemical and Metallurgical Engineering, University of the Witwatersrand https://orcid.org/0000-0001-6736-4771
  • Lesley H. Chown School of Chemical and Metallurgical Engineering, University of the Witwatersrand - DST-NRF Centre of Excellence in Strong Materials, University of the Witwatersrand https://orcid.org/0000-0001-9699-6065
  • Nthabiseng B. Maledi School of Chemical and Metallurgical Engineering, University of the Witwatersrand https://orcid.org/0000-0003-2862-2218

DOI:

https://doi.org/10.3989/revmetalm.170

Palabras clave:

Aleación base Al reforzada con composites, Aleación CuZnAlNi, Flujo de esfuerzo, Deformación en caliente, Memoria de forma, Mecanismo de refuerzo

Resumen


Se investigó el comportamiento del flujo de esfuerzo por compresión y las microestructuras de los compuestos de matriz de aleación de Al deformada en caliente (AMC) y reforzados con partículas de la aleación con memoria de forma (SMA) basadas en CuZnAlNi. La aleación base Al-Mg-Si reforzada con 4, 6 y 8% en peso de Cu-18Zn-7Al-0,3Ni, y 8% en peso de partículas de SiC, se obtuvieron mediante agitación doble y se sometieron a pruebas de compresión en caliente a una velocidad de deformación de 1,0 s−1, temperatura de 400 °C, y ~60% de defor­mación global constante, para ello se utilizó un simulador termo-mecánico Gleeble 3500. Las microestructuras iniciales y deformadas de los compuestos se examinaron utilizando microscopía óptica. El uso de partículas Cu-18Zn-7Al-0,3Ni como refuerzo dio como resultado el desarrollo de una estructura de matriz más fina en comparación con el SiC. La tensión de flujo y la dureza de los AMC reforzados con partículas de Cu-18Zn-7Al-0,3Ni fueron generalmente más altos que los de la aleación de Al no reforzada y la aleación de Al reforzada con SiC. También la tensión de flujo y, en gran medida, la dureza creció con el aumento en el porcentaje en peso de partículas de Cu-18Zn-7Al-0,3Ni en el AMC. La mejora observada con el uso de partículas de la aleación Cu-18Zn-7Al-0,3Ni se atribuyó a la combinación del refuerzo mejorado y el refinamiento del tamaño grano de la matriz, fortalecimiento la interface, el esfuerzo residual de compresión, la alta conductividad térmica, y la capacidad de amortiguación ofrecida por la aleación Cu-18Zn-7Al-0,3Ni.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abraham, S.J., Dinaharan, I., Selvam, J.D.R., Akinlabi, E.T. (2019). Microstructural characterization of vanadium par­ticles reinforced AA6063 aluminum matrix composites via friction stir processing with improved tensile strength and appreciable ductility. Compos. Commun. 12, 54-58. https://doi.org/10.1016/j.coco.2018.12.011

Alaneme, K.K., Aluko, A.O. (2012). Fracture Toughness (K1C) and Tensile Properties of As-Cast and Age-Hardened Aluminium (6063) - Silicon Carbide Particulate Compos­ites. Sci. Iran. 19 (4), 992-996. https://doi.org/10.1016/j.scient.2012.06.001

Alaneme, K.K., Okotete, E.A. (2016). Reconciling Viability and Cost -effective Shape Memory Alloy Options - A Review of Copper and Iron Based Shape Memory Metallic Sys­tems. Eng. Sci. Technol. Int. J. 19 (3), 1582-1592. https://doi.org/10.1016/j.jestch.2016.05.010

Alaneme, K.K., Umar, S. (2018). Mechanical behaviour and damping properties of Ni modified Cu-Zn-Al shape mem­ory alloys. J. Sci. Adv. Mater. Dev. 3 (3), 371-379. https://doi.org/10.1016/j.jsamd.2018.05.002

Alaneme, K.K., Okotete, E.A., Anaele, J.U. (2019a). Structural Vibration Mitigation - A concise review of the capabili­ties and application of Cu and Fe based shape memory alloys in civil structures. J. Build. Eng. 22, 22-32. https://doi.org/10.1016/j.jobe.2018.11.014

Alaneme, K.K., Okotete, E.A., Fajemisin, A.V., Bodunrin, M.O. (2019b). Applicability of metallic reinforcements for mechanical performance enhancement in metal matrix composites - A Review. Arab J. Basic Appl. Sci. 26 (1), 311-330. https://doi.org/10.1080/25765299.2019.1628689

Alaneme, K.K., Fajemisin, A.V., Maledi, N.B. (2019c). Devel­opment of Aluminium Based Composites Reinforced with Steel and Graphite Particles: Structural, Mechanical and Wear Characterization. J. Mater. Res. Technol. 8 (1), 670-682. https://doi.org/10.1016/j.jmrt.2018.04.019

Anshuman, S. (2017). Recent, Advances in Metal Matrix Com­posites (MMCs): A Review. Biomed. J. Sci. Tech. Res. 1 (2), 1-3. https://doi.org/10.26717/BJSTR.2017.01.000236

Bodunrin, M.O., Alaneme, K.K., Chown, L.H. (2015). Alu­minium Matrix Hybrid Composites: A Review of Rein­forcement Philosophies; Mechanical Corrosion and Tribological Characteristics. J. Mater. Res. Technol. 4 (4), 434-445. https://doi.org/10.1016/j.jmrt.2015.05.003

Crăciun, R.C., Stanciu, S., Cimpoeșu, R., (Dragoș) Ursanu, A.I., Manole, V., Paraschiv, P., Chicet, D.L. (2016). Metal­lic materials for mechanical damping capacity applications. (7th International Conference on Advanced Concepts in Mechanical Engineering). IOP Conf. Ser: Mat. Sci. Eng. 147, 012031. https://doi.org/10.1088/1757-899X/147/1/012031

Chawla, N., Shen, Y. (2001). Mechanical Behavior of Par­ticle Reinforced Metal Matrix Composites. Adv. Eng. Mater. 3 (6), 357-370. https://doi.org/10.1002/1527-2648(200106)3:6<357::AID-ADEM357>3.0.CO;2-I

Chen, W., Li, Z., Lu, T., He, T., Li, R., Li, B., Wan, B., Fu, Z., Scudino, S. (2019). Effect of ball milling on micro­structure and mechanical properties of 6061Al matrix composites reinforced with high-entropy alloy particles. Mater. Sci. Eng. A 762, 138116. https://doi.org/10.1016/j.msea.2019.138116

Fan, X.G., Zhang, Y., Gao, P.F., Lei, Z.N., Zhan, M. (2017). Deformation behavior and microstructure evolution dur­ing hot working of a coarse-grained Ti-5Al-5Mo-5V-3Cr-1Zr titanium alloy in beta phase field. Mater. Sci. Eng. A 694, 24-32. https://doi.org/10.1016/j.msea.2017.03.095

Fathy, A., El-kady, O., Mohammed, M.M. (2015). Effect of iron addition on microstructure, mechanical and magnetic properties of Al-matrix composite produced by powder metallurgy route. Trans. Nonferr. Metal. Soc. China 25 (1), 46−53. https://doi.org/10.1016/S1003-6326(15)63577-4

Guerioune, M., Amiour, Y., Bounour, W., Guellati, O., Benaldjia, A., Amara, A., Chakri, N.E., Rachedi, M. (2008). SHS of shape memory CuZnAl alloys. Int. J. Self Propag. High Temp. Syn. 17, 41-48. https://doi.org/10.3103/S1061386208010044

Gopi Krishna, M., Praveen Kumar, K., Naga Swapna, M., Babu Rao, J., Bhargava, N.R.M.R. (2018). Fabrication Character­ization and Mechanical Behaviour of A356/Copper Particu­late Reinforced Metallic Composites. Mater. Today-Proc. 5 (2), 7685-7691. https://doi.org/10.1016/j.matpr.2017.11.444

Hasem, F.E., Abdelaziz, M., Essam, R.I. (2016). Preparation and characterization of squeeze cast Al-Si piston alloy reinforced by Ni and nano Al2O3 particle. J. King Saud Univ., Eng. Sci. 28 (2), 230-239. https://doi.org/10.1016/j.jksues.2014.04.002

Huang, G., Wu, J., Hou, W., Shen, Y. (2018). Microstructure, mechanical properties and strengthening mechanism of titanium particle reinforced aluminum matrix com­posites produced by submerged friction stir processing. Mater. Sci. Eng. A 734, 353-363. https://doi.org/10.1016/j.msea.2018.08.015

Huang, G.Q., Yan, Y.F., Wu, J., Shen, Y.F., Gerlich, A.P. (2019). Microstructure and mechanical properties of fine-grained aluminum matrix composite reinforced with nitinol shape memory alloy particulates produced by underwater friction stir processing. J. Alloys Compd. 786, 257-271. https://doi.org/10.1016/j.jallcom.2019.01.364

Jani, J.M., Leary, M., Subic, A., Gibson, M.A. (2014). A review of shape memory alloy research, applications and opportunities. Mater. Design 56, 1078-1113. https://doi.org/10.1016/j.matdes.2013.11.084

Kotresh, M., Benal, M.M., Siddalingaswamy, N.H. (2018). Thermal residual stress investigation in Al 2024/ Cu-Al-Ni adaptive composites by X-Ray diffractometer. Mater. Today-Proc. 5 (1), 2830-2835. https://doi.org/10.1016/j.matpr.2018.01.072

Lee, J.K., Taya, M. (2004). Strengthening mechanism of shape memory alloy reinforcedmetal matrix composite. Scripta Mater. 51 (5), 443-447. https://doi.org/10.1016/j.scriptamat.2004.04.027

Lu, T., Chen, W., Li, B., Mao, M., Li, Z., Liu, Y., Scudino, S. (2019). Influence mechanisms of Zr and Fe particle additions on the microstructure and mechanical behavior of squeeze-cast 7075Al hybrid composites. J. Alloys Compds. 798, 25, 587-596. https://doi.org/10.1016/j.jallcom.2019.05.301

Ni, D.R., Wang, J.J., Ma, Z.Y. (2016). Shape memory effect, thermal expansion and damping property of friction stir processed NiTip/Al composite. J. Mater. Sci. Technol. 32 (2), 162-166. https://doi.org/10.1016/j.jmst.2015.12.013

Oliveira, J.P., Duarte, J.F., Inácio, P., Schell, N., Miranda, R.M., Santos, T.G. (2017). Production of Al/NiTi com­posites by friction stir welding assisted by electrical cur­rent. Mater. Design 113, 311-318. https://doi.org/10.1016/j.matdes.2016.10.038

Poletti, C., Dieringa, H., Warchomicka, F. (2009). Local defor­mation and processing maps of as-cast AZ31 alloy. Mater. Sci. Eng. A 516 (1-2), 138-147. https://doi.org/10.1016/j.msea.2009.03.007

Prasad, D.S., Shoba, Ch., Ramanaiah, N. (2014). Investiga­tions on mechanical properties of aluminium hybrid com­posites. J. Mater. Res. Technol. 3 (1), 79-85. https://doi.org/10.1016/j.jmrt.2013.11.002

Selvakumar, S., Dinaharan, I., Palanivel, R., Babu, B.G. (2017). Characterization of molybdenum particles reinforced Al6082 Aluminium Matrix Composites with improved duc­tility produced using friction stir processing. Mater. Charac. 125, 13-22. https://doi.org/10.1016/j.matchar.2017.01.016

Van Humbeeck, J. (2003). Damping capacity of thermoelas­tic martensite in shape memory alloys. J. Alloys Compds. 355 (1-2), 58-64. https://doi.org/10.1016/S0925-8388(03)00268-8

Wei, Z.G., Tang, C.Y., Lee, W.B., Cui, L.S., Yang, D.Z. (1997). Preparation of a smart composite material with TiNiCu shape memory particulates in an aluminium matrix Mater. Lett. 32 (5-6), 313-317. https://doi.org/10.1016/S0167-577X(97)00050-5

Zhao, Y.F., Qian, Z., Ma, X., Chen, H., Gao, T., Wu, Y., Liu, X. (2016). Unveiling the semicoherent interface with definite orientation relationships between reinforcements and matrix in novel Al3BC/Al composites. ACS Appl. Mater. Inter. 8 (41), 28194-28201. https://doi.org/10.1021/acsami.6b08913 PMid:27673431

Publicado

2020-06-30

Cómo citar

Alaneme, K. K., Bodunrin, M. O., Chown, L. H., & Maledi, N. B. (2020). Comportamiento del flujo de esfuerzo y análisis microestructural de compuestos de matriz de aluminio deformados en caliente y reforzados con partículas de la aleación con memoria de forma CuZnAlNi. Revista De Metalurgia, 56(2), e170. https://doi.org/10.3989/revmetalm.170

Número

Sección

Artículos