Producción de acero 1006 compuesto de base de aluminio reforzado con alambre por soldadura explosiva

Autores/as

DOI:

https://doi.org/10.3989/revmetalm.165

Palabras clave:

Aleaciones de aluminio, AUTODYN, Composite, Refuerzo de alambre de acero 1006, Soldabilidad

Resumen


Los compuestos de base de aluminio se fabrican utilizando una variedad de métodos, como laminado en caliente, pulvimetalurgia y soldadura explosiva. La soldadura explosiva es uno de los métodos más nuevos de producción de compuestos de base de aluminio. En este estudio, las placas de aluminio fueron reforzadas con alambres de acero a través de la soldadura explosiva. Utilizando la simulación numérica y la ventana de soldabi­lidad se determinaron los parámetros apropiados. Los resultados se verificaron utilizando datos experimentales, las muestras se evaluaron con un microscopio óptico. Los estudios de metalografía mostraron que el compuesto que se obtuvo tiene una excelente calidad de unión de la interfaz sin grietas. La ventana de soldabilidad y los resultados de la simulación coincidieron muy bien con los datos experimentales.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aizawa, Y., Nishiwaki, J., Harada, Y., Muraishi, S., Kumai, S. (2016). Experimental and numerical analysis of the forma­tion behavior of intermediate layers at explosive welded Al/Fe joint interfaces. J. Manuf. Process. 24, 100-106. https://doi.org/10.1016/j.jmapro.2016.08.002

Akbari Mousavi, S.A.A., Al-Hassani, S.T.S. (2008). Finite ele­ment simulation of explosively-driven plate impact with application to explosive welding. Mater. Design 29 (1), 1-19. https://doi.org/10.1016/j.matdes.2006.12.012

Bataev, I.A., Bataev, A.A., Mali, V.I., Pavliukova, D.V. (2012). Structural and mechanical properties of metallic-interme­tallic laminate composites produced by explosive welding and annealing. Mater. Design 35, 225-334. https://doi.org/10.1016/j.matdes.2011.09.030

Cowan, G.R., Bergmann, O.R., Holtzman, A.H. (1971). Mecha­nism of bond zone wave formation in explosion-clad met­als. Metall. Mater. Trans. B. 2, 3145-3155. https://doi.org/10.1007/BF02814967

Deribas, A. (1972). Physics of explosive hardening and welding. Nauka, Novosibirsk, USSR.

Gülenc, B., Kaya, Y., Durgutlu, A., Gülenc, I.T., Yildirim, M.S., Kahraman, N. (2016). Production of wire rein­forced composite materials through explosive welding. Arch. Civ. Mech. Eng. 16 (1), 1-8. https://doi.org/10.1016/j.acme.2015.09.006

Honh-bo, X., Shao-gang, W., Hai-feng, B. (2014). Microstruc­ture and mechanical properties of Ti/Al explosive cladding. Mater. Design 56, 1014-1019. https://doi.org/10.1016/j.matdes.2013.12.012

Hoseini-Athar, M.M., Tolaminejad, B. (2015). Weldability win­dow and the effect of interface morphology on the prop­erties of Al/Cu/Al laminated composites fabricated by explosive welding. Mater. Design 86, 516-525. https://doi.org/10.1016/j.matdes.2015.07.114

Huagui, H., Jichao, W., Wenwen, L. (2017). Mechanical proper­ties and reinforced mechanism of the stainless steel wire mesh-reinforced Al-matrix composite plate fabricated by twin-roll casting. Adv. Mech. Eng. 9 (6), 1-9. https://doi.org/10.1177/1687814017716639

Khanzadeh, M.R., Bakhtiari, H., Seyedi, M., Ahmadi, H.R. (2017). Simulation and welding window of three layers explosively bonded AA5083 and AA1050 aluminum alloys to carbon steel. J. Energ. Mater. 12 (3), 139-152.

Li, Y., Liu, C., Yu, H., Zhao, F., Wu, Zh. (2017). Numerical simulation of Ti/Al bimetal composite fabricated by explo­sive welding. Metals. 7 (10), 407. https://doi.org/10.3390/met7100407

Los, I.S., Khorin, A.V., Troshkina, E.G., Guskov, M.S. (2010). Al-Cu composite by explosive welding. X international symposium on explosive production of new materials: Sci­ence, Technology, Business and Innovations (EPNM-2010). Bechichi, Montenegro, pp.1-14.

Mendes, R., Ribeiro, J.B., Loureiro, A. (2013). Effect of explo­sive characteristics on the explosive welding of stainless steel to carbon steel in cylindrical configuration. Mater. Design 51, 182-192. https://doi.org/10.1016/j.matdes.2013.03.069

Nassiri, A., Chini, G.P., Kinsey, B.L. (2015a). Arbitrary lagrang­ian Eulerian FEA method to predict wavy pattern and weldability window during magnetic pulsed welding. Pro­ceedings of the ASME 2015 Inter. MSEC2015-9442, pp. 8-12. https://doi.org/10.1115/MSEC2015-9442

Nassiri, A., Chini, G., Vivek, A., Daehn, G., Kinsey, B. (2015b). Arbitrary Lagrangian-Eulerian finite element simulation and experimental investigation of wavy interfacial morphology during high velocity impact welding. Mater. Design 88, 345-358. https://doi.org/10.1016/j.matdes.2015.09.005

Patterson, R. (1993). Fundamentals of explosion welding. ASM Handbook, pp. 60-164.

Pronichev, D.V., Gurevich, L.M., Trykov, Y.P., Trunov, M.D. (2016). Investigation on contact melting of Cu/Al lami­nated composite. Rev. Metal. 52 (4), e079. https://doi.org/10.3989/revmetalm.079

Ribeiro, J.B., Mendes, R., Loureiro, A. (2014). Review of the weldability window concept and equation for explosive welding. J. Phys.: Conf. Ser. 500 (5), 052038. https://doi.org/10.1088/1742-6596/500/5/052038

Roudbari, M., Mehdipoor, A., Azarafza, R. (2013). Heat treat­ment of stainless steel 316L- titanium bimetal manufactured by explosive welding. IRJABS 7 (10), 687-692. http://www.irjabs.com/files_site/paperlist/r_2003_140406222643.pdf.

Song, J., Raabe, D., Eggeler, G. (2011). Microstructure and properties of interfaces formed by explosion cladding of titanium to low carbon steel. Ph.D. Thesis, Ruhr-Univer­sity Bochum, Germany.

Wittman, R. (1973). The influence of collision parameters on the strength and microstructure of an explosion welded aluminum alloy. Proceedings of 2nd Symposium on Use of Explosive Energy in Manufacturing Metallic Materials of New Properties and Possibilities of Application thereof in the Chemical Industry, pp. 153-168.

Xunzhong, G., Jie, T., Wentao, W., Huaguan, L., Chen, W. (2013). Effects of the inner mould material on the alu­minium-316L stainless steel explosive clad pipe. Mater. Design 49, 116- 122. https://doi.org/10.1016/j.matdes.2013.02.001

Yingbin, L., Chao, L., Xiaoyan, H., Chufan, Y., Tiansheng, L. (2017). Explosive welding of copper to high nitrogen austenitic stainless steel. Metals 9 (3), 339. h https://doi.org/10.3390/met9030339

Zakharenko, I., Zlobin, B. (1983). Effect of the hardness of welded materials on the position of the lower limit of explosive welding combust. Combust. Explos. Shock Waves 19, 689-692. https://doi.org/10.1007/BF00750461

Zamani, E., Lighat, G.H. (2012). Explosive welding of Stainless Steel-Carbon steel coaxial pipes. J. Mater. Sci. 47, 685-695. https://doi.org/10.1007/s10853-011-5841-9

Publicado

2020-06-30

Cómo citar

Roudbari, M., Refahati, N., & Mehdipour Omrani, A. (2020). Producción de acero 1006 compuesto de base de aluminio reforzado con alambre por soldadura explosiva. Revista De Metalurgia, 56(2), e165. https://doi.org/10.3989/revmetalm.165

Número

Sección

Artículos