Análisis térmico y comportamiento de desgaste de aleaciones Mg-4Zn-(x)Zr fundidos en molde de cáscara y molde de grafito

Autores/as

DOI:

https://doi.org/10.3989/revmetalm.189

Palabras clave:

Aleaciones de magnesio, Aleación de Mg-4Zn-Zr, Ensayo de tracción, Fundición por gravedad, Fundición a presión, Fundición de moldes de cerámica, Propiedades de desgaste, Solidificación

Resumen


El efecto de refinamiento del grano del circonio (Zr) es conocido, sin embargo, la influencia en la cantidad de Zr y su efecto sobre la solidificación y el comportamiento de desgaste de las aleaciones de Mg-Zn modificadas no se han estudiado adecuadamente. Las aleaciones de Mg-4Zn-(x)Zr son aleadas con la adición de 0,5% a 4% en peso de elemento Zr se funden y se vierten en dos moldes de colada diferentes y se realizan análisis térmicos. Se examinaron la microestructura de los productos de colada, el comportamiento de solidificación, las transformaciones de fase, el tamaño de grano, las curvas de análisis térmico y las propiedades de desgaste. La microestructura se modificó mediante la adición de Zr y el tamaño de grano se redujo tanto para los materiales de moldeo de grafito como de cerámica. La máxima resistencia a la tracción se obtuvo añadiendo 1% de Zr (170 MPa) y 4% Zr (105-110 HRB) utilizando un molde de grafito, respectivamente. La máxima resistencia a la tracción a temperatura ambiente se alcanzó en el Mg-4Zn-1Zr, el alargamiento fue del 4,9% y la resistencia a la tracción fue de 138 MPa. El valor máximo de tracción en caliente se obtuvo en las aleaciones con 2% de Zr añadido. La tasa de desgaste de la aleación Mg-4Zn disminuyó al aumentar el elemento Zr hasta un 2% en peso. La adición de más del 2% en peso de Zr provocó un aumento de la microporosidad en la microestructura. Debido a la microporosidad causada por la adición de Zr, la tasa de desgaste se redujo ligeramente.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ali, Y., Qiu, D., Jiang, B., Pan, F., Zhang, M.-X. (2015). Current research progress in grain refinement of cast magnesium alloys: A review article. J. Alloys Compd. 619, 639-651. https://doi.org/10.1016/j.jallcom.2014.09.061

Arroyave, R., Liu, Z.K. (2005). Thermodynamics of Mg-Zn-Zr: Implication on the effect of Zr on grain refining of Mg-Zn alloys. In Magnesium Technology. TMS Annual Meeting, San Francisco, CA, USA, pp. 203-208.

Barber, L.P. (2004). Characterization of the Solidification Behavior and Resultant Microstructures of Mg-Al Alloys. A Thesis of Master, Worcester Polytechnic Institute, pp. 10-46.

Bazhenov, V.E., Koltygin, A.V., Sung, M.C., Park, S.H., Titov, A.Y., Bautin, V.A., Matveev, S.V., Belov, M.V., Belov, V.D., Malyutin, K.V. (2020). Design of Mg-Zn-Si-Ca casting magnesium alloy with high thermal conductivity. J. Magnes. Alloy 8 (1), 184-191. https://doi.org/10.1016/j.jma.2019.11.008

Buzolin, R.H., Tolnai, D., Mendis, C.L., Stark, A., Schell, N., Pinto, H., Kainer, K.U., Hort, N. (2015). Investigation of compression behavior of Mg-4Zn-2(Nd,Gd)-0.5Zr at 350 ºC by in itu Synchrotron Radiation Diffraction. In Magnesium Technology. TMS, pp. 103-107. https://doi.org/10.1007/978-3-319-48185-2_21

Cai, S., Lei, T., Li, N., Feng, F. (2012). Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys. Mater. Sci. Eng. C 32 (8), 2570-2577. https://doi.org/10.1016/j.msec.2012.07.042

Cao, P., Qian, M., StJohn, D.H. (2005). Native grain refinement of magnesium alloys. Scripta Mater. 53 (7), 841-844. Chalisgaonkar, R. (2020). Insight in applications, manufacturing and corrosion behaviour of magnesium and its alloys - A review. Mater. Today Proc. 26 (2), 1060-1071. https://doi.org/10.1016/j.scriptamat.2005.06.010

Dadić, Z., Živković, D., Čatipović, N., Marinić-Kragić, I. (2019). Influence of steel preheat temperature and molten casting alloy AlSi9Cu3(Fe) impact speed on wear of X38CrMoV5-1 steel in high pressure die casting conditions. Wear 424-425, 15-22. https://doi.org/10.1016/j.wear.2019.02.008

Decker, R.F., Berman, T.D., Miller, V.M., Jones, J.W., Pollock, T.M., LeBeau, S.E. (2019). Alloy Design and Processing Design of Magnesium Alloys Using 2nd Phases. JOM 71, 2219-2226. https://doi.org/10.1007/s11837-019-03482-z

Dobrzański, L.A., Kr.l, M., Tański, T., Maniara, R. (2009). Effect of cooling rate on the solidification behavior of magnesium alloys. ACMSSE 1 (1), 21-24.

Dobrzański, L.A., Kr.l, M., Tański, T. (2011). Effect of cooling rate and aluminum contents on the MgAl-Zn alloys' structure and mechanical properties. In Effect of casting, plastic forming or surface technologies on the structure and properties of the selected engineering materials. Volume 1, Open Access Library, pp. 9-54.

El Mahallawy, N., Ahmed Diaa, A., Akdesir, M., Palkowski, H. (2017). Effect of Zn addition on the microstructure and mechanical properties of cast, rolled and extruded Mg-6Sn-xZn alloys. Mater. Sci. Eng. A 680, 47-53. https://doi.org/10.1016/j.msea.2016.10.075

Godzierz, M., Olsz.wka-Myalska, A., Wrześniowski, P. (2019). Wear resistance of composites with Mg-Zn-RE-Zr alloy matrix and open-celled carbon foam. Mater. Eng. 1, 16-22. https://doi.org/10.15199/28.2019.2.3

He, M.L., Luo, T.J., Zhou, J.X., Yang, Y.S. (2018). Microstructure and mechanical properties of as-cast Mg-4Zn-0.5Zr- 0.2Cu-0.2Ce alloy. Mater. Sci. Technol. 34 (11), 1370-1378. https://doi.org/10.1080/02670836.2018.1457288

Jamesh, M.I., Wu, G., Zhao, Y., McKenzie, D.R., Bilek, M.M.M., Chu, P.K. (2015). Electrochemical corrosion behavior of biodegradable Mg-Y-RE and Mg-Zn-Zr alloys in Ringer's solution and simulated body fluid. Corros. Sci. 91, 160-184. https://doi.org/10.1016/j.corsci.2014.11.015

Kapinos, D., Augustyn, B., Szymanek, M. (2014). Methods of introducing alloying elements into liquid magnesium. Metall. Foundry Eng. 40 (3), 141-160. https://doi.org/10.7494/mafe.2014.40.3.141

Karakulak, E. (2019). A review: Past, present and future of grain refining of magnesium castings. J. Magnes. Alloy 7 (3), 355-369. https://doi.org/10.1016/j.jma.2019.05.001

Kurnaz, S.C., Sevik, H., A.ıkg.z, S., .zel, A. (2011). Influence of titanium and chromium addition on the microstructure and mechanical properties of squeeze cast Mg-6Al alloy. J. Alloys Compd. 509 (6), 3190-3196. https://doi.org/10.1016/j.jallcom.2010.12.055

Li, Q., Wang, Q., Wang, Y., Zeng, X., Ding, W. (2007). Effect of Nd and Y addition on microstructure and mechanical properties of as-cast Mg-Zn-Zr alloy. J. Alloys Compd. 427 (1-2), 115-123. https://doi.org/10.1016/j.jallcom.2006.02.054

Li, J., Lu, Y., Zhang, H., Xin, L. (2015). Effect of grain size and hardness on fretting wear behavior of Inconel 600 alloys. Tribol. Int. 81, 215-222. https://doi.org/10.1016/j.triboint.2014.08.005

Mandal, D., Murmu, L., Choudhary, C., Singh, G., Sahoo, K.L. (2019). Influence of alloying elements and grain refiner on microstructure, mechanical and wear properties of Mg-Al- Zn alloys. Can. Metall. Q. 58 (2), 241-251. https://doi.org/10.1080/00084433.2018.1540087

NovaCast (2020). Shell Mould Casting. Accessed 04.02.21. https://www.novacast.co.uk/services/casting/shell-mould-casting/.

Ozarslan, S., Şevik, H., Sorar, İ. (2019). Microstructure, mechanical and corrosion properties of novel Mg-Sn-Ce alloys produced by high pressure die casting. Mater. Sci. Eng. C 105, 110064. https://doi.org/10.1016/j.msec.2019.110064

Peterson Enterprises (2020). Graphite Mold Casting. Accessed 04.02.2021. http://www.petersonenterprises.com/processesproducts/casting/graphite-mold-casting.

Prabhu, D.B., Muthuraja, C., Nampoothiri, J., Gopalakrishnan, P., Ravi, K.R. (2018). Solidification Analysis of Mg-4Zn- xSr System to Study Phase Transformations in Mg-Rich Corner. Trans. Indian Inst. Met. 71, 2801-2806. https://doi.org/10.1007/s12666-018-1438-1

Ren, Y.P, Guo, Y., Chen, D., Li, S., Pei, W.L., Qin, G.W. (2011). Isothermal section of Mg-Zn-Zr ternary system at 345 ºC. Calphad 35 (3), 411-415. https://doi.org/10.1016/j.calphad.2011.05.009

Shuai, C., Yang, Y., Wu, P., Lin, X., Liu, Y., Zhou, Y., Feng, P., Liu, X., Peng, S. (2017). Laser rapid solidification improves corrosion behavior of Mg-Zn-Zr alloy. J. Alloys Compd. 691, 961-969. https://doi.org/10.1016/j.jallcom.2016.09.019

Snopiński, P., Kr.l, M., Tański, T., Krupińska, B. (2018). Effect of cooling rate on microstructural development in alloy ALMG9. J. Therm. Anal. Calorim. 133, 379-390. https://doi.org/10.1007/s10973-018-7313-9

Song, J., She, J., Chen, D., Pan, F. (2020). Latest research advances on magnesium and magnesium alloys worldwide. J. Magnes. Alloys 8 (1), 1-41. https://doi.org/10.1016/j.jma.2020.02.003

Srinivasan, A., Huang, Y., Mendis, C.L., Blawert, C., Kainer, K.U., Hort, N. (2014). Investigations on microstructures, mechanical and corrosion properties of Mg-Gd-Zn alloys. Mater. Sci. Eng. A 595, 224-234. https://doi.org/10.1016/j.msea.2013.12.016

Vinogradov, A., Orlov, D., Estrin, Y. (2012). Improvement of fatigue strength of a Mg-Zn-Zr alloy by integrated extrusion and equal-channel angular pressing. Scripta Mater. 67 (2) 209-212. https://doi.org/10.1016/j.scriptamat.2012.04.021

Wang, C., Sun, M., Zheng, F., Peng, L., Ding, W. (2014). Improvement in grain refinement efficiency of Mg-Zr master alloy for magnesium alloy by friction stir processing. J. Magnes. Alloys 2 (3), 239-244. https://doi.org/10.1016/j.jma.2014.09.001

Watarai, H. (2006). Trend of Research and Development for Magnesium Alloys. Science and Technology Trends 18, 84-97.

Wu, D., Chen, R.S., Tang, W.N., Han, E.H. (2012). Influence of texture and grain size on the room-temperature ductility and tensile behavior in a Mg-Gd-Zn alloy processed by rolling and forging. Mater. Design 41, 306-313. https://doi.org/10.1016/j.matdes.2012.04.033

Yarkadaş, G., Kumruoğlu, L.C., Şevik, H. (2018). The effect of Cerium addition on microstructure and mechanical properties of high pressure die cast Mg-5Sn alloy. Mater. Charact. 136, 152-156. https://doi.org/10.1016/j.matchar.2017.11.057

Yuan, Y., Huang, Y., Wei, Q. (2019). Effects of Zr Addition on Thermodynamic and Kinetic Properties of Liquid Mg- 6Zn-xZr Alloys. Metals 9 (5), 607. https://doi.org/10.3390/met9050607

Zhang, M., Chen, C., Liu, C., Wang, S. (2018). Study on Porous Mg-Zn-Zr ZK61 Alloys Produced by Laser Additive Manufacturing. Metals 8 (8), 635. https://doi.org/10.3390/met8080635

Zhou, B., Liu, W., Wu, G., Zhang, L., Zhang, X., Ji, H., Ding, W. (2020). Microstructure and mechanical properties of sandcast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment. J. Mater. Sci. Technol. 43, 208-219. https://doi.org/10.1016/j.jmst.2020.01.013

Publicado

2021-04-08

Cómo citar

Cenk Kumruoglu, L. . (2021). Análisis térmico y comportamiento de desgaste de aleaciones Mg-4Zn-(x)Zr fundidos en molde de cáscara y molde de grafito. Revista De Metalurgia, 57(1), e189. https://doi.org/10.3989/revmetalm.189

Número

Sección

Artículos