Efectos del tipo de enfriamiento en la formación del microconstituyente Martensita - Austenita en un acero de Alta Resistencia y Baja Aleación (HSLA)
DOI:
https://doi.org/10.3989/revmetalm.214Palabras clave:
Acero para tuberías, Ataque selectivo, Austenita retenida, Enfriamiento acelerado, Martensita-Austenita (MA), Microscopía Electrónica de Barrido (SEM)Resumen
Se evaluó el efecto de diferentes condiciones de enfriamiento en la formación de la Martensita-Austenita (MA) en un acero de Alta Resistencia y Baja Aleación (HSLA). El componente MA es perjudicial para la tenacidad al impacto en aplicaciones de tuberías, por lo que el objetivo de esta investigación fue minimizar su presencia mediante la elección de medios de enfriamiento eficaces y parámetros óptimos como la velocidad de enfriamiento y la temperatura final de enfriamiento. La fracción de volumen, el tamaño y la morfología de la MA se evaluaron mediante ataque selectivo y se corroboraron mediante SEM y EBSD. Las pruebas de dureza Vickers coincidieron con las fracciones de volumen de MA medidas. La muestra enfriada con gas helio y baño de sales con la temperatura de enfriamiento final más baja de 460 °C, exhibió una mezcla fina de ferrita bainítica, bainita granular y la menor fracción de volumen de MA, junto con un tamaño promedio de partícula menor. Una alta velocidad de enfriamiento y una disminución de la temperatura de enfriamiento final dieron lugar a una disminución de la fracción de volumen y tamaño promedio de las partículas de MA.
Descargas
Citas
Belato, D., Waele, W. De, Vanderschueren, D., Hertelé, S. (2013). Latest developments in mechanical properties and metallurgical of high strength line pipe steel. Conference: Int. Journal Sustainable Construction & Design, Vol. 4, pp. 1-10. https://doi.org/10.21825/scad.v4i1.742
Biss, V., Cryderman, R.L. (1971). Martensite and Retained Austenite in Hot-Rolled, Low-Carbon Bainitic Steels. Metall. Mater. Trans. B 2, 2267-2276. https://doi.org/10.1007/BF02917559
Cota, A.B., Santos, D.B. (2000). Microstructural Characterization of Bainitic Steel Submitted to Torsion Testing and Interrupted Accelerated Cooling. Mater. Charact. 44 (3), 291-299. https://doi.org/10.1016/S1044-5803(99)00060-1
Huda, N., Midawi, A.R.H., Gianetto, J., Lazor, R., Gerlich, A.P. (2016). Influence of Martensite-Austenite (MA) on Impact Toughness of X80 Linepipe steels. Mater. Sci. Eng. A 662, 481-491. https://doi.org/10.1016/j.msea.2016.03.095
Kabanov, A., Korpala, G., Kawalla, R., Prahl, U. (2019). Effect of Hot Rolling and Cooling Conditions on the Microstructure, MA Constituent Formation, and Pipeline Steels Mechanical Properties. Steel Res. Int. 90 (6), 1800336. https://doi.org/10.1002/srin.201800336
Konca, E. (2020). Production of 20 mm Thick API PSL 2 X60 and X70 Grade Plates from a Nb-Ti Microalloyed Steel. HJSE 7 (2), 149-155. https://doi.org/10.17350/HJSE19030000183
Liang, X.J., Hua, M.J., DeArdo, A.J. (2014). The Mechanism of Martensite-Austenite Microconstituents Formation During Thermomechanical Controlling Processing in Low Carbon Bainitic Steel. Mater. Sci. Forum 783-786, 704-712. https://doi.org/10.4028/www.scientific.net/MSF.783-786.704
Okatsu, M., Shinmiya, T., Ishikawa, N., Endo, S., Kondo, J. (2005). Development of High Strength Linepipe with Excellent Deformability. Int. Conf. Offshore Mechanics and Arctic Engineering (OMAE2005) 67149, 63-70. https://doi.org/10.1115/OMAE2005-67149
Reichert, J.M., Garcin, T., Militzer, M., Poole, W.J. (2012). Formation of Martensite/Austenite (M/A) in X80 Linepipe Steel. Proceedings IPC2012-90465. Vol. 3, Materials and Joining, pp. 483-489. https://doi.org/10.1115/IPC2012-90465
Rodrigues, P.C.M., Pereloma, E.V., Santos, D.B. (2000). Mechanical Properties of an HSLA Bainitic Steel Subjected to Controlled Rolling with Accelerated Cooling. Mater. Sci. Eng. A 283 (1-2), 136-143. https://doi.org/10.1016/S0921-5093(99)00795-9
Takayama, N., Miyamoto, G., Furuhara, T. (2018). Chemistry and three-dimensional morphology of martensite-austenite constituent in the bainite structure of low-carbon low-alloy steels. Acta Mater. 145, 154-164. https://doi.org/10.1016/j.actamat.2017.11.036
Wang, B., Dong, F., Wang, Z., Rdk, M., Wang, G. (2017). Microstructure and Mechanical Properties of Nb-B bearing Low Carbon Steel Plate: Ultrafast Cooling versus Accelerated Cooling. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 32 (3), 619-624. https://doi.org/10.1007/s11595-017-1643-5
Zhao, H. (2016). Effect of Austenite Deformation and Continuous Cooling on the Microstructural Evolution in a Microalloyed Steel. PhD Thesis, The University of Sheffield, England.
Zhao, M.C., Yang, K., Shan, Y. (2002). The Effects of Thermo-Mechanical Control Process on Microstructures and Mechanical Properties of a Commercial Pipeline Steel. Mater. Sci. Eng. A 335 (1-2), 14-20. https://doi.org/10.1016/S0921-5093(01)01904-9
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.
Datos de los fondos
Secretaría de Educación Pública
Números de la subvención UV-EXB-570