The evolution of phases in FeNiCoCrCuBx high entropy alloys produced through microwave sintering and vacuum arc melting

Authors

DOI:

https://doi.org/10.3989/revmetalm.215

Keywords:

Arc melting, High entropy alloys, Liquid phase separation, Microstructure, Microwave sintering

Abstract


Microwave heating and sintering techniques are applied to various production lines and material systems to improved their microstructure and mechanical properties in comparison to conventional means of production. These techniques also consume less power and energy compared to conventional heating methods. In this study, the production of high entropy alloys (HEA) by arc melting was carried out with specimens made from compacted and sintered elemental powders; the sintering process of alloy powders prior to remelting prevents certain problems such as porosity and uneven mixing that may occur during casting. We investigated the effects of conventional and microwave sintering processes prior to remelting and casting on structure and properties of FeNiCoCrCuBx HEA. Our results show that microwave sintering changes the size and shape of phases and microstructure of the alloy by affecting the liquid-phase separation mechanism. Three-point bending strength and ductility of alloys produced by microwave sintering were superior to conventional sintering.

Downloads

Download data is not yet available.

References

Aguilar-Hurtado, J.Y., Vargas-Uscategui, A., Paredes-Gil, K., Palma-Hillerns, R., Tobar, M.J., Amado, J.M. (2020). Boron Addition in a Non-Equiatomic Fe50Mn30Co10Cr10 Alloy Manufactured by Laser Cladding: Microstructure and Wear Abrasive Resistance. Appl. Surf. Sci. 515, 146084. https://doi.org/10.1016/j.apsusc.2020.146084

Algan Şimşek, İ.B., Arık, M.N., Talaş, Ş., Kurt. A. (2021). The Effect of B Addition on the Microstructural and Mechanical Properties of FeNiCoCrCu High Entropy Alloys. Metall. Mater. Trans. A: 52 (5), 1749-1758. https://doi.org/10.1007/s11661-021-06186-9

Alshataif, Y.A., Sivasankaran, S., Al Mufadi, F.A., Alaboodi, A.S., Ammar, H.R. (2020). Manufacturing methods, microstructural and mechanical properties evolutions of high entropy alloys: a review. Met. Mater. Int. 26, 1099-1133. https://doi.org/10.1007/s12540-019-00565-z

Anklekar, R.M., Bauer, K., Agrawal, D.K., Roy. R. (2005). Improved Mechanical Properties and Microstructural Development of Microwave Sintered Copper and Nickel Steel PM Parts. Powder Metall. 48 (1), 39-46. https://doi.org/10.1179/003258905X37657

Cantor, B., Audebert, F., Galano, M., Kim, K.B., Stone, I.C., Warren, P.J. (2005). Novel Multicomponent Alloys. J. Metastable Nanocryst. Mater. 24-25, 1-6. https://doi.org/10.4028/www.scientific.net/JMNM.24-25.1

Chandravanshi, V.K., Sarkar, R., Ghosal, P., Kamat, S.V., Nandy, T.K. (2010). Effect of Minor Additions of Boron on Microstructure and Mechanical Properties of As-Cast near α Titanium Alloy. Metall. Mater. Trans. A: 41 (4), 936-946. https://doi.org/10.1007/s11661-009-0155-0

Chen, R., Qin, G., Zheng, H., Wang, L., Su, Y., Chiu, Y.L., Ding, H., Guo, J., Fu, H. (2018). Composition Design of High Entropy Alloys Using the Valence Electron Concentration to Balance Strength and Ductility. Acta Mater. 144,129-137. https://doi.org/10.1016/j.actamat.2017.10.058

Curiotto, S., Greco, R., Pryds, N.H., Johnson, E., Battezzati, L. (2007). The Liquid Metastable Miscibility Gap in Cu-Based Systems. Fluid Ph. Equilibria 256 (1-2), 132-136. https://doi.org/10.1016/j.fluid.2006.10.003

Dąbrowa, J., Cieślak, G., Stygar, M., Mroczka, K., Berent, K., Kulik, T., Danielewski, M. (2017). Influence of Cu Content on High Temperature Oxidation Behavior of AlCoCrCuxFeNi High Entropy Alloys (x = 0; 0.5; 1). Intermetallics 84, 52-61. https://doi.org/10.1016/j.intermet.2016.12.015

Ertuğrul, Onur (2014). Production of Ceramic Reinforced Stainless Steel Matrix Composites by Conventional and Microwave Sintering Methods. Dokuz Eylül University.

Ertugrul, O., Park, H.-S., Onel, K., Willert-Porada, M. (2015). Structure and Properties of SiC and Emery Powder Reinforced PM 316l Matrix Composites Produced by Microwave and Conventional Sintering. Powder Metall. 58 (1), 41-50. https://doi.org/10.1179/1743290114Y.0000000100

Ferrari, V., Wolf, W., Zepon, G., Coury, F.G., Kaufman, M.J., Bolfarini, C., Kiminami, C.S., Botta, W.J. (2019). Effect of Boron Addition on the Solidification Sequence and Microstructure of AlCoCrFeNi Alloys. J. Alloys Compd. 775, 1235-1243. https://doi.org/10.1016/j.jallcom.2018.10.268

Fu, Z., Chen, W., Wen, H., Zhang, D., Chen, Z., Zheng, B., Zhou, Y., Lavernia, E.J. (2016). Microstructure and Strengthening Mechanisms in an FCC Structured Single-Phase Nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 High-Entropy Alloy. Acta Mater. 107, 59-71. https://doi.org/10.1016/j.actamat.2016.01.050

Fu, X., Schuh, C.A., Olivetti, E.A. (2017). Materials Selection Considerations for High Entropy Alloys. Scr. Mater. 138, 145-150. https://doi.org/10.1016/j.scriptamat.2017.03.014

Gao, M.C., Yeh, J.-W., Liaw, P.K., Zhang, Y. (2016). High-Entropy Alloys. Fundamentals and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-27013-5

Guo, S., Liu, C.T. (2011). Phase Stability in High Entropy Alloys: Formation of Solid-Solution Phase or Amorphous Phase. Pro. Nat. Sci.: Mater. Int. 21 (6), 433-446. https://doi.org/10.1016/S1002-0071(12)60080-X

Guo, T., Li, J., Wang, J., Wang, Y., Kou, H., Niu, S. (2017). Liquid-Phase Separation in Undercooled CoCrCuFeNi High Entropy Alloy. Intermetallics 86, 110-115. https://doi.org/10.1016/j.intermet.2017.03.021

Hekimoğlu, A.P., Turan, Y.E., İsmailoğlu, I., Akyol, M.E., Şen, E. (2019). Effect of Grain Refinement with Boron on the Microstructure and Mechanical Properties of Al-30Zn Alloy. J. Fac. Eng. Archit. Gazi Univ. 34 (1), 523-534.

Hou, L., Hui, J., Yao, Y., Chen, J., Liu, J. (2019). Effects of Boron Content on Microstructure and Mechanical Properties of AlFeCoNiBx High Entropy Alloy Prepared by Vacuum Arc Melting. Vacuum 164, 212-218. https://doi.org/10.1016/j.vacuum.2019.03.019

Jones, N.G., Christofidou, K.A., Stone, H.J. (2015). Rapid Precipitation in an Al0.5CrFeCoNiCu High Entropy Alloy. Mater. Sci. Technol. 31 (10), 1171-1177. https://doi.org/10.1179/1743284715Y.0000000004

Kao, Y.F., Chen, T.J., Chen, S.K., Yeh, J.W. (2009). Microstructure and Mechanical Property of As-Cast, -Homogenized, and -Deformed AlxCoCrFeNi (0 ≤ x ≤ 2) High-Entropy Alloys. J. Alloys Compd. 488 (1), 57-64. https://doi.org/10.1016/j.jallcom.2009.08.090

Kaufman, M.J., Munitz, A., Nahmany, M., Derimow, N., Abbaschian, R. (2018). Microstructure and Mechanical Properties of Heat Treated Al1.25CoCrCuFeNi High Entropy Alloys. Mater. Sci. Eng. A 714, 146-159. https://doi.org/10.1016/j.msea.2017.12.084

Liu, X., Lei, W., Ma, L., Liu, J., Liu, J., Cui, J. (2016). Effect of Boron on the Microstructure, Phase Assemblage and Wear Properties of Al0.5CoCrCuFeNi High-Entropy Alloy. Rare Metal. Mat. Eng. 45 (9), 2201-2207. https://doi.org/10.1016/S1875-5372(17)30003-6

Mishra, R.R., Sharma, A.K. (2016a). A Review of Research Trends in Microwave Processing of Metal-Based Materials and Opportunities in Microwave Metal Casting. Crit. Rev. Solid State Mater. Sci. 41 (3), 217-255. https://doi.org/10.1080/10408436.2016.1142421

Mishra, R.R., Sharma, A.K. (2016b). Microwave-Material Interaction Phenomena: Heating Mechanisms, Challenges and Opportunities in Material Processing. Compos-A: App. Sci. Manuf. 81, 78-97. https://doi.org/10.1016/j.compositesa.2015.10.035

Oghbaei, M., Mirzaee, O. (2010). Microwave versus Conventional Sintering: A Review of Fundamentals, Advantages and Applications. J. Alloys Compd. 494 (1-2), 175-189. https://doi.org/10.1016/j.jallcom.2010.01.068

Pérez, P., Garcés, G., Frutos-Myro, E., Antoranz, J.M., Tsipas, S., Adeva, P. (2019). Design and Characterization of Three Light-Weight Multi-Principal-Element Alloys Potentially Candidates as High-Entropy Alloys. Rev. Metal. 55 (3), e147. https://doi.org/10.3989/revmetalm.147

Savaşkan, T., Hekimoǧlu, A.P. (2014). Microstructure and Mechanical Properties of Zn-15Al-Based Ternary and Quaternary Alloys. Mater. Sci. Eng. A 603, 52-57. https://doi.org/10.1016/j.msea.2014.02.047

Shivam, V., Basu, J., Pandey, V.K., Shadangi, Y., Mukhopadhyay, N.K. (2018). Alloying Behaviour, Thermal Stability and Phase Evolution in Quinary AlCoCrFeNi High Entropy Alloy. Adv. Powder Technol. 29 (9), 2221-2230. https://doi.org/10.1016/j.apt.2018.06.006

Singh, S., Gupta, D., Jain, V., Sharma, A.K. (2015). Microwave Processing of Materials and Applications in Manufacturing Industries: A Review. Mater. Manuf. Process. 30 (1), 1-29. https://doi.org/10.1080/10426914.2014.952028

Tariq, N.H., Naeem, M., Hasan, B.A., Akhter, J.I., Siddique, M. (2013). Effect of W and Zr on Structural, Thermal and Magnetic Properties of AlCoCrCuFeNi High Entropy Alloy. J. Alloys Compd. 556, 79-85. https://doi.org/10.1016/j.jallcom.2012.12.095

Terentyev, D., Khvan, T., You, J.-H., Van Steenberge, N. (2020). Development of Chromium and Chromium-Tungsten Alloy for the Plasma Facing Components: Application of Vacuum Arc Melting Techniques. Journal of Nuclear Materials 536, 152204. https://doi.org/10.1016/j.jnucmat.2020.152204

Torralba, J.M., Campos, M. (2014). Toward High Performance in Powder Metallurgy. Rev. Metal. 50 (2), e017. https://doi.org/10.3989/revmetalm.017

Wu, M.-W., Fu, Y.C., Lin, Y.-L., Lin, C.-Y. Chen, C.-S. (2021). Promoting the Sintering Densification and Mechanical Properties of Gas-Atomized High-Entropy Alloy Powder by Adding Boron. Mater. Charact. 179, 111370. https://doi.org/10.1016/j.matchar.2021.111370

Xian, X., Lin, L., Zhong, Z., Zhang, C., Chen, C., Song, K., Cheng, J., Wu, Y. (2018). Precipitation and Its Strengthening of Cu-Rich Phase in CrMnFeCoNiCux High-Entropy Alloys. Mater. Sci. Engine A 713, 134-40. https://doi.org/10.1016/j.msea.2017.12.060

Zhang, W., Liaw, P.K., Zhang, Y. (2018). Science and Technology in High-Entropy Alloys. Sci. China Mater. 61 (1), 2-22. https://doi.org/10.1007/s40843-017-9195-8

Zhang, H., Wang, C., Xu, P., Limberg, W., Willumeit-Römer, R., Pyczak, F., Ebel, F. (2019). Novel Type of Biomedical Titanium-Manganese-Niobium Alloy Fabricated by Metal Injection Moulding. Euro PM 2019 Congress and Exhibition.

Zhou, C., Li, L., Wang, J., Yi, J., Peng, Y. (2018). A Novel Approach for Fabrication of Functionally Graded W/Cu Composites via Microwave Processing. J. Alloys Compd. 743, 383-387. https://doi.org/10.1016/j.jallcom.2018.01.372

Zuo, F., Carry, C., Saunier, S., Marinel, S., Goeuriot, D. (2013). Comparison of the Microwave and Conventional Sintering of Alumina: Effect of MgO Doping and Particle Size. J. Am. Ceram. Soc. 96 (6), 1732-1737 https://doi.org/10.1111/jace.12320

Published

2022-04-12

How to Cite

Algan Şimşek, İrem B. ., Talaş, S. ., & Kurt, A. . (2022). The evolution of phases in FeNiCoCrCuBx high entropy alloys produced through microwave sintering and vacuum arc melting. Revista De Metalurgia, 58(1), e215. https://doi.org/10.3989/revmetalm.215

Issue

Section

Articles

Funding data

Gazi Üniversitesi
Grant numbers 07/2018-07