Influencia de la temperatura de envejecimiento en diferentes propiedades de la aleación de aluminio EN AW-7075

Autores/as

DOI:

https://doi.org/10.3989/revmetalm.238

Palabras clave:

Envejecimiento, Conductividad eléctrica, EN AW-7075, Dureza, Propiedades térmicas

Resumen


En este trabajo se estudió la influencia de la temperatura de envejecimiento sobre la dureza, la conductividad eléctrica, la difusividad térmica y la conductividad térmica de la aleación de aluminio EN AW-7075. Tras realizar un tratamiento de solubilización a 480 °C durante 1 h y templar la aleación en agua helada, se caracterizó mediante Análisis Térmico Diferencial (ATD) con el fin de determinar las temperaturas óptimas para los tratamientos de envejecimiento isócronos. A continuación, se llevó a cabo el envejecimiento isócrono a temperaturas comprendidas entre los 110 °C y los 250 °C durante 30 min Después de realizar estos tratamientos térmicos de envejecimiento, se determinó la dureza, y se caracterizó su conductividad eléctrica, la difusividad térmica, la conductividad térmica y las fases presentes en la microestructura. La dureza alcanzó un valor máximo tras el envejecimiento a 150 °C, mientras que las demás propiedades aumentaron gradualmente con la temperatura de envejecimiento. La caracterización microestructural mediante SEM-EDS de la aleación envejecida reveló la existencia de fases precipitadas que aparecen homogéneamente distribuidas en la microestructura.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

ASTM E384-22 (2022). Standard Test Method for Microindentation Hardness of Materials. ASTM International, West Conshohocken, PA, USA.

Cai, S.W., He, Y., Song, R.G. (2020). Study on the Strengthening Mechanism of Two-Stage Double-Peaks Aging in 7075 Aluminum Alloy. Trans. Indian Iinst. Met. 73 (1), 109-117. https://doi.org/10.1007/s12666-019-01809-7

Chen, G., Chen, Q., Wang, B., Du, Z.-M. (2015). Microstructure evolution and tensile mechanical properties of thixoformed high performance Al-Zn-Mg-Cu alloy. Met. Mater. Int. 21 (5), 897-906. https://doi.org/10.1007/s12540-015-5139-6

Choi, S.W. Cho, H.S., Kang, C.S., Kumai,S. (2015). Precipitation dependence of thermal properties for Al-Si-Mg-Cu-(Ti) alloy with various heat treatment. J. Alloys Compd. 647, 1091-1097. https://doi.org/10.1016/j.jallcom.2015.05.201

Cui, L., Liu, Z., Zhao, Xi., Tang, J., Liu, K., Liu, X., Qian, C. (2014). Precipitation of metastable phases and its effect on electrical resistivity of Al-0.96Mg2Si alloy during aging. Trans. Nonferrous. Met. Soc. China 24 (7), 2266-2274. https://doi.org/10.1016/S1003-6326(14)63343-4

Dos Santos, S.L., Toloczko, F.R., Merij, A.C., Saito, N.H., Da Silva, D.M. (2021). Investigation and Nanomechanical Behavior of the Microconstituents of Al-Si-Cu alloy After Solution and Ageing Heat Treatments. Mater. Res. 24 (2), e20200329. https://doi.org/10.1590/1980-5373-mr-2020-0329

Edwards, G.A., Stiller, K., Dunlop, G.L., Couper, M.J. (1998). The precipitation sequence in Al-Mg-Si alloys. Acta Mater. 46 (11), 3893-3904. https://doi.org/10.1016/S1359-6454(98)00059-7

Fallahi, A., Hosseini-Tudeshky, H., Ghalehbandi, S.M. (2013). Effect of heat treatment on mechanical properties of ECAPed 7075 aluminum alloy. Adv. Mat. Res. 829, 62-66. https://doi.org/10.4028/www.scientific.net/AMR.829.62

Fan, Y., Tang, X., Wang, S., Chen, B. (2021). Comparisons of Age Hardening and Precipitation Behavior in 7075 Alloy Under Single and Double-Stage Aging Treatments. Met. Mater. Int. 27, 4204-4215. https://doi.org/10.1007/s12540-020-00875-7

Goswami, R., Lynch, S., Holroyd N.J.H., Knight, S.P., Holtz R.L. (2013). Evolution of Grain Boundary Precipitates in Al 7075 Upon Aging and Correlation with Stress Corrosion Cracking Behavior. Metall. Mater. Trans. A. 44, 1268-1278. https://doi.org/10.1007/s11661-012-1413-0

Greb, T., Mittler, T., Schmid, S., Volk, W., Chen, H., Khalifa, N.B. (2019). Thermal analysis and production of As-Cast Al 7075/6060 Bilayer billets. Int. J. Metalcast. 13 (4), 817-829. https://doi.org/10.1007/s40962-018-0282-8

Hebbar, S., Kertsch, L., Butz, A. (2020). Optimizing Heat Treatment Parameters for the W-Temper Forming of 7xxx Series Aluminum Alloys. Metals 10 (10), 1361. https://doi.org/10.3390/met10101361

Kacar, R., Guleryuz, K. (2015). Effect of Quenching Rate and Pre-strain on the Strain Ageing Behaviors of 7075 Aluminum Alloys. Mater. Res. 18 (2), 328-333. https://doi.org/10.1590/1516-1439.307414

Khangholi, S.N., Javidani, M., Maltais, A., Chen, X. (2021). Effects of natural aging and pre-aging on the strength and electrical conductivity in Al-Mg-Si AA6201 conductor alloys. Mater. Sci. Eng. A. 820, 141538. https://doi.org/10.1016/j.msea.2021.141538

Kilic, S., Kacar, I., Sahin, M., Ozturk, F., Erdem, O. (2019). Effects of Aging Temperature, Time, and Pre-Strain on Mechanical Properties of AA7075. Mater. Res. 22 (5), e20190006. https://doi.org/10.1590/1980-5373-mr-2019-0006

Ku, M.H., Hung, F.Y., Lui, T.S., Lai, J.J. (2018). Enhanced Formability and Accelerated Precipitation Behavior of 7075 Al Alloy Extruded Rod by High Temperature Aging. Metals. 8 (8), 648. https://doi.org/10.3390/met8080648

Liu, Y., Zhu, B., Wang, Y., Li, S., Zhang, Y. (2020). Fast solution heat treatment of high strength aluminum alloy sheets in radiant heating furnace during hot stamping. Int. J. Lightweight Mater. 3 (1), 20-25. https://doi.org/10.1016/j.ijlmm.2019.11.004

Lumley, R.G., Deeva, N., Larsen, R., Gemberovic, J., Freeman J. (2013). The Role of Alloy Composition and T7 Heat Treatment in Enhancing Thermal Conductivity of Aluminum High Pressure Diecastings. Metall. Mater. Trans. A. 44 (2), 1074-1086. https://doi.org/10.1007/s11661-012-1443-7

MacKenzie, D.S. (2000). Quench rate and ageing effects in aluminum-zinc-magnesium-copper aluminum alloys. PhD Thesis, Faculty of the Graduate School of the University of Missouri-Rolla, Missouri, USA.

Mukhopadhyay, A.K., Yang, Q.B., Singh, S.R. (1994). The influence of zirconium on the early stages of aging of a ternary Al-Zn-Mg alloy. Acta Metall. Mater. 42 (9), 3083-3091. https://doi.org/10.1016/0956-7151(94)90406-5

Nicolas, M. (2002). Precipitation evolution in an Al-Zn-Mg alloy during non-isothermal heat treatments and in the heat-affected zone of welded joints. PhD Thesis, The Grenoble Institute of Technology, Grenoble, France.

Ozer, G., Karaaslan, A. (2017). Properties of AA7075 aluminum alloy in aging and retrogression and reaging process. Trans. Nonferrous. Met. Soc. China 27 (11), 2357-2362. https://doi.org/10.1016/S1003-6326(17)60261-9

Padap, A.K., Yadav, A.P., Kumar, P., Kumar, N. (2020). Effect of aging heat treatment and uniaxial compression on thermal behavior of 7075 aluminum alloy. Mater. Today: Proc. 33 (8), 5442-5447. https://doi.org/10.1016/j.matpr.2020.03.196

Pan, H., Yue, H., Zhang, X. (2021). Interactions between Dislocations and Boundaries during Deformation. Materials 14 (4), 1012. https://doi.org/10.3390/ma14041012 PMid:33669924 PMCid:PMC7924853

Panigrahi, S.K., Jayaganthan, R. (2011). Effect of Annealing on Thermal Stability, Precipitate Evolution, and Mechanical Properties of Cryorolled Al 7075 Alloy. Metall. Mater. Trans. A. 42 (10), 3208-3217. https://doi.org/10.1007/s11661-011-0723-y

Pankade, S.B., Khedekar, D.S., Gogte, C.L. (2018). The influence of heat treatments on electrical conductivity and corrosion performance of AA 7075-T6 aluminium alloy. Procedia Manuf. 20, 53-58. https://doi.org/10.1016/j.promfg.2018.02.007

Sha, G., Cerezo, A. (2004). Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050). Acta Mater. 52 (15), 4503-4516. https://doi.org/10.1016/j.actamat.2004.06.025

Salazar-Guapuriche, M.A., Zhao, Y.Y., Pitman, A., Greene, A. (2006). Correlation of Strength with Hardness and Electrical Conductivity for Aluminium Alloy 7010. Mater. Sci. Forum. 519-521, 853-858. https://doi.org/10.4028/www.scientific.net/MSF.519-521.853

Sambathkumara, M., Sasikumara K.S.K., Gukendrana R., Dineshkumara K., Ponappab K., Harichandran S. (2021). Investigation of mechanical and corrosion properties of Al 7075/Redmud metal matrix composite. Rev. Metal. 57 (1), e185. https://doi.org/10.3989/revmetalm.185

Siddiqui, R.A., Abdullah, H.A., Al-Belushi, K.R. (2000). Influence of aging parameters on the mechanical properties of 6063 aluminium alloy. J. Mater. Process. Technol. 102 (1-3), 234-240. https://doi.org/10.1016/S0924-0136(99)00476-8

Simsek, I. (2019). Investigation of the effect of second phase precipitates on the corrosion and electrical conductivity of 7075 aluminum alloys. Anti-Corros. Method. M. 66 (5), 683-688. https://doi.org/10.1108/ACMM-02-2019-2082

Woznicki, A., Leszczynska-Madej, B., Wloch, G., Grzyb, J., Madura, J., Lesniak, D. (2021). Homogenization of 7075 and 7049 Aluminium Alloys Intended for Extrusion Welding. Metals 11 (2), 338. https://doi.org/10.3390/met11020338

Yang, X., Liu, J., Chen, J., Wan, C., Feng, L., Liu, P., Wu, C. (2014). Relationship Between the Strengthening Effect and the Morphology of Precipitates in Al-7.4Zn-1.7Mg-2.0Cu Alloy. Acta Metall. Sin. 27, 1070-1077 https://doi.org/10.1007/s40195-014-0122-7

Publicado

2023-04-27

Cómo citar

Stamenković, U. ., Ivanov, S., Marković, I., Gorgievski, M., Božinović, K., & Kovačević, A. . (2023). Influencia de la temperatura de envejecimiento en diferentes propiedades de la aleación de aluminio EN AW-7075. Revista De Metalurgia, 59(1), e238. https://doi.org/10.3989/revmetalm.238

Número

Sección

Artículos

Datos de los fondos

Univerzitet u Beogradu
Números de la subvención 451-03-47/2023-01/200131

Artículos más leídos del mismo autor/a