Optimización de los parámetros de proceso en el mecanizado por electroerosión del acero D2 utilizando una herramienta compuesta de Cu-SiC basada en un modelo sustitutivo basado en datos para la rugosidad superficial y el desgaste de la herramienta ...
DOI:
https://doi.org/10.3989/revmetalm.242Palabras clave:
Modelización basada en datos, Mecanizado por electroerosión, Algoritmo Firefly, Aprendizaje automático, Rugosidad superficial, Desgaste de herramientasResumen
El mecanizado por electroerosión (EDM, del inglés electrical discharge machining) se utiliza principalmente para la fabricación de matrices y también para el mecanizado de materiales duros. Materiales como el cobre puro, las aleaciones de cobre, el latón, el grafito y el acero son utilizados de manera convencional como electrodos en el proceso de electroerosión. Durante el mecanizado con estos electrodos convencionales, el desgaste de la herramienta se convierte en el principal cuello de botella que conduce a un mayor coste de mecanizado. En el presente trabajo, la punta de la herramienta compuesta por un 80% de cobre y un 20% de carburo de silicio se utilizó para el mecanizado de acero D2 endurecido. Para fabricar la punta de la herramienta de material compuesto se utilizó la vía de la pulvimetalurgia. La tasa de desgaste del electrodo y la rugosidad de la superficie se evaluaron con respecto a los diferentes parámetros del proceso como la corriente de entrada, el voltaje de separación, el tiempo de pulso encendido, el tiempo de pulso apagado y la presión de lavado dieléctrico. Durante el análisis se encontró que la corriente de entrada (I p ), el tiempo de pulso (T on ) y el tiempo de pulso (T off ) eran los parámetros significativos que afectaban al índice de desgaste de la herramienta mientras que el I p , T on y la presión de lavado afectaban más a la rugosidad de la superficie. La caracterización con microscopía electrónica de barrido revela que el aumento de I p conduce a un aumento en la tasa de desgaste de la herramienta. Los datos obtenidos en los experimentos se utilizaron para desarrollar modelos sustitutivos basados en el aprendizaje automático. Los tres modelos de aprendizaje automático son el bosque aleatorio, la regresión polinómica y el árbol de gradiente reforzado. La capacidad predictiva de los modelos sustitutos basados en aprendizaje automático se evaluó contrastando el R2 y el error cuadrático medio (ECM) de predicción de las respuestas. El mejor modelo sustitutivo se utilizó para desarrollar una función objetivo compleja para su uso en la optimización basada en el algoritmo de la luciérnaga de los parámetros de mecanizado de entrada para la minimización de las respuestas de salida.
Descargas
Citas
Chung, W.T., Mishra, A.A., Perakis, N., Ihme, M. (2021). Data-assisted combustion simulations with dynamic submodel assignment using random forests. Combust. Flame 227, 172-185. https://doi.org/10.1016/j.combustflame.2020.12.041
Dimla, D.E., Hopkinson, N., Rothe, H. (2004). Investigation of complex rapid EDM electrodes for rapid tooling applications. Int. J. Adv. Manuf. Technol. 23, 249-255. https://doi.org/10.1007/s00170-003-1709-8
Gill, A.S., Kumar, S., (2016). Surface Roughness and Microhardness Evaluation for EDM with Cu-Mn Powder Metallurgy Tool. Mater. Manuf. Process. 31 (4), 514-521. https://doi.org/10.1080/10426914.2015.1070412
Hadad, M., Bui, L.Q., Nguyen, C.T. (2018). Experimental investigation of the effects of tool initial surface roughness on the electrical discharge machining (EDM) performance. Int. J. Adv. Manuf. Tech. 95, 2093-2104. https://doi.org/10.1007/s00170-017-1399-2
Hewidy, M.S., El-Taweel, T.A., El-Safty, M.F. (2005). Modeling the machining parameters of wire electrical 599 discharge machining of Inconel 601 using RSM. J. Mater. Process. Technol. 169 (2), 328-336. https://doi.org/10.1016/j.jmatprotec.2005.04.078
Hosseini, A., Kishawy, H.A. (2014). Cutting tool materials and tool wear. In Machining of Titanium Alloys. Materials Forming, Machining and Tribology. Davim, J. (eds), Springer, Berlin, Heidelberg, pp. 31-56. https://doi.org/10.1007/978-3-662-43902-9_2
Khanra, A.K., Sarkar, B.R., Bhattacharya, B., Pathak, L.C., Godkhindi, M.M. (2007). Performance of ZrB2-Cu composite as an EDM electrode. J. Mater. Process. Technol. 183 (1), 122-126. https://doi.org/10.1016/j.jmatprotec.2006.09.034
Khan, M.A.R., Rahman, M.M., Kadirgama, K. (2015). An experimental investigation on surface finish in die-sinking EDM of Ti-5Al-2.5Sn. Int. J. Adv. Manuf. Technol. 77, 1727-1740. https://doi.org/10.1007/s00170-014-6507-y
Klocke, F., Schneider, S., Ehle, L., Meyer, H., Hensgen, L., Klink, A. (2016). Investigations on Surface Integrity of Heat Treated 42CrMo4 (AISI 4140) Processed by Sinking EDM. Procedia CIRP 42, 580-585. https://doi.org/10.1016/j.procir.2016.02.263
Kumar, S., Singh, R., Singh, T.P., Sethi, B.L. (2009). Surface modification by electrical discharge machining: A review. J. Mater. Process. Technol. 209 (8), 3675-3687. https://doi.org/10.1016/j.jmatprotec.2008.09.032
Kumar, S.V., Kumar, M.P. (2017). Experimental investigation and optimization of machining process parameters in AISI D2 steel under conventional EDM and cryogenically cooled EDM process. Trans. Indian Inst. Met. 70, 2293-2301. https://doi.org/10.1007/s12666-017-1092-z
Kumar, A., Sharma, R., Gupta, A.K. (2021). Experimental investigation of WEDM process through integrated desirability and machine learning technique on implant material. J. Mech. Behav. Mater. 30 (1), 38-48. https://doi.org/10.1515/jmbm-2021-0005
Li, L., Wong, Y.S., Fuh, J.Y.H., Lu, L. (2001). EDM performance of TiC/Copper-based sintered electrodes. Mater. Des. 22 (8), 669-678. https://doi.org/10.1016/S0261-3069(01)00010-3
Mishra, B.P., Routara, B.C. (2018). Impact of induction hardened work piece hardness on EDM performance. Mater. Manuf. Process. 33 (6) 626-633. https://doi.org/10.1080/10426914.2017.1364861
Munz, M., Risto, M., Haas, R. (2013). Specifics of flushing in electrical discharge drilling. Procedia CIRP 6, 83-88. https://doi.org/10.1016/j.procir.2013.03.024
Naik, S., Das, S.R., Dhupal, D., Khatua, A.K. (2021). Analysis on surface integrity and sustainability assessment in electrical discharge machining of engineered Al-22%SiC metal matrix composite. Rev. Metal. 57 (4), e210.
Nain, S.S., Garg, D., Kumar, S. (2017). Modeling and optimization of process variables of wire-cut electric discharge machining of super alloy Udimet-L605. Eng. Sci. Technol. Int. J. 20 (1), 247-264. https://doi.org/10.1016/j.jestch.2016.09.023
Norasetthekul, S., Eubank, P.T., Bradley, W.L., Bozkurt, B., Stucker, S. (1999). Use of zirconium diboride-copper as an electrode in plasma applications. J. Mater. Sci. 34, 1261-1270. https://doi.org/10.1023/A:1004529527162
Ostertagová, E. (2012). Modelling using polynomial regression. Procedia Eng. 48, 500-506. https://doi.org/10.1016/j.proeng.2012.09.545
Panda, J.P., Warrior, H.V. (2022). Evaluation of machine learning algorithms for predictive Reynolds stress transport modelling. Acta Mech. Sin. 38, 321544. https://doi.org/10.1007/s10409-022-09001-w
Pandey, P.C., Jilani, S.T. (1986). Plasma channel growth and the resolidified layer in EDM. Precis. Eng. 8 (2) 104-110. https://doi.org/10.1016/0141-6359(86)90093-0
Patowari, P.K., Saha, P., Mishra, P.K. (2015). An experimental investigation of surface modification of C-40 steel using W-Cu powder metallurgy sintered compact tools in EDM. Int. J. Adv. Manuf. Technol. 80, 343-360. https://doi.org/10.1007/s00170-015-7004-7
Paturi, U.M.R., Cheruku, S., Pasunuri, V.P.K., Salike, S., Reddy, N.S., Cheruku, S. (2021). Machine learning and statistical approach in modeling and optimization of surface roughness in wire electrical discharge machining. Machine Learning with Applications 6, 100099. https://doi.org/10.1016/j.mlwa.2021.100099
Pay, Y., Deborah, D., Chung, L. (1995). Powder metallurgy fabrication of metal matrix composites using coated fillers. The International Journal of Powder Metallurgy 31 (4), 335-390.
Prabhu, S., Uma, B., Vinayagam, K.K. (2014). Electrical discharge machining parameters optimization using response surface methodology and fuzzy logic modeling. J. Braz. Soc. Mech. Sci. Eng. 36, 637-652. https://doi.org/10.1007/s40430-013-0112-0
Pradhan, M.K., Biswas, C.K. (2009). Modeling and analysis of process parameters on surface roughness in EDM of AISI D2 tool steel by RSM approach. Int. J. Mathe. Physl. Eng. Sci. 3 (9) 1132-1137.
Saha, S., Gupta, K.K., Maity, S.R., Dey, S. (2022). Data-driven probabilistic performance of Wire EDM: A machine learning based approach. Proceedings of the Institution of Mechanical Engineers Part B J. Eng. Manuf. 236 (6-7), 908-919. https://doi.org/10.1177/09544054211056417
Sanchez, J.A., Conde, A., Arriandiaga, A., Wang, J., Plaza, S. (2018). Unexpected Event Prediction in Wire Electrical Discharge Machining Using Deep Learning Techniques. Materials 11 (7), 1100. https://doi.org/10.3390/ma11071100 PMid:29958394 PMCid:PMC6073871
Shanmugasundar, G., Vanitha, M., Robert, Cep., Kumar, V., Kalita, K., Ramachandran, M. (2021). A Comparative Study of Linear, Random Forest and Ada Boost Regressions for Modeling Non-Traditional Machining. Processes 9 (11), 2015. https://doi.org/10.3390/pr9112015
Shukla S.K., Priyadarshini, A. (2018). Application of Machine Learning Techniques for Multi Objective Optimization of Response Variables in Wire Cut Electro Discharge Machining Operation. Mater. Sci. Forum 969, 800-806. https://doi.org/10.4028/www.scientific.net/MSF.969.800
Singh, S., Maheshwari, S., Pandey, P.C. (2004). Some investigations into the electric discharge machining of hardened tool steel using different electrode materials. J. Mater. Process. Technol. 149 (1-3), 272-277. https://doi.org/10.1016/j.jmatprotec.2003.11.046
Somani, N., Tyagi, Y., Gupta, N. (2021a). An investigation on the influence of sintering temperature on microstructural, physical and mechanical properties of Cu-SiC composites. J. Eng. Des Technol. 1726-0531. https://doi.org/10.1108/JEDT-07-2021-0374
Somani, N., Tyagi, Y., Kumar, P. (2021b). Review on alternative approaches to fabricate the Copper based Electric Discharge Machining (EDM) electrodes. OP Conf. Ser.: Mater. Sci. Eng. 1116, 012105. https://doi.org/10.1088/1757-899X/1116/1/012105
Somani, N., Tyagi, Y, Kumar, P. (2022). Effect of Process parameters on machining of D2 steel using Taguchi Method. In Recent Trends in Industrial and Production Engineering. pp. 67-78. https://doi.org/10.1007/978-981-16-3135-1_8
Surleraux, A., Lepert, R., Pernot, J.P., Kerfriden, P., Bigot, S. (2020). Machine Learning-Based Reverse Modeling Approach for Rapid Tool Shape Optimization in Die-Sinking Micro Electro Discharge Machining. J. Comput. Inf. Sci. Eng. 20 (3), 031002. https://doi.org/10.1115/1.4045956
Tsai, H.C., Yan, B.H., Huang, F.Y. (2003). EDM performance of Cr/Cu-based composite electrodes. Int. J. Mach. Tools Manuf. 43 (3), 245-252. https://doi.org/10.1016/S0890-6955(02)00238-9
Ulas, M., Aydur, O., Gurgenc, T., Ozel, C. (2020). Surface roughness prediction of machined aluminum alloy with wire electrical discharge machining by different machine learning algorithms. J. Mater. Res. Technol. 9 (6), 12512-12524. https://doi.org/10.1016/j.jmrt.2020.08.098
Upadhyay, C., Datta, S., Masanta, M., Mahapatra, S. (2017). An experimental investigation emphasizing surface characteristics of electro-discharge machined Inconel. J. Braz. Soc. Mech. Sci. Eng. 39, 3051-3066. https://doi.org/10.1007/s40430-016-0643-2
Walia, A.S., Srivastava, V., Rana, P.S., Somani, N., Gupta, N.K., Singh, G., Pimenov, D.Y., Mikolajczyk, T., Khanna, N. (2021). Prediction of Tool Shape in Electrical Discharge Machining of EN31 Steel Using Machine Learning Techniques. Metals 11 (11), 1668. https://doi.org/10.3390/met11111668
Wang, J., Sanchez, J.A., Ayesta, I., Iturrioz, J.A. (2018). Unsupervised Machine Learning for Advanced Tolerance Monitoring of Wire Electrical Discharge Machining of Disc Turbine Fir-Tree Slots. Sensors 18 (10), 3359. https://doi.org/10.3390/s18103359 PMid:30297666 PMCid:PMC6210559
Wang, J., Sanchez, J.A., Iturrioz, J.A., Ayesta, I. (2019). Geometrical Defect Detection in the Wire Electrical Discharge Machining of Fir-Tree Slots Using Deep Learning Techniques. Appl. Sci. 90 (1), 90. https://doi.org/10.3390/app9010090
Weiwen, X., Junqi, W., Wansheng, Z. (2018). Break-out detection for high-speed small hole drilling EDM based on machine learning. Procedia CIRP 68, 569-574. https://doi.org/10.1016/j.procir.2017.12.115
Yang, X.S. (2008). Nature-Inspired Metaheuristic Algorithms. Luniver Press, Beckington, UK.
Yogesh, L., Arunadevi, M., Prakash, C.P.S. (2021). Prediction of MRR & Surface Roughness in Wire EDM Machining using Decision Tree and Naive Bayes Algorithm. International Conference on Emerging Smart Computing and Informatics (ESCI). Pune, India.
Zaw, H.M., Fuh, J.Y.H., Nee, A.Y.C., Lu, L. (1999). Formation of a new EDM electrode material using sintering techniques. J. Mater. Process. Technol. 89-90, 182-186. https://doi.org/10.1016/S0924-0136(99)00054-0
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.