Artificial neural networks for prediction of quality in resistance spot welding
DOI:
https://doi.org/10.3989/revmetalm.2006.v42.i5.32Keywords:
Resistance spot welding, Metallurgical quality, Artificial neural networksAbstract
An artificial neural network is proposed as a tool for predicting from three parameters (weld time, current intensity and electrode sort) if the quality of a resistance spot weld reaches a certain level or not. The quality is determined by cross tension testing. The fact of reaching this quality level or not is the desired output that goes with each input of the artificial neural network during its supervised learning. The available data set is made up of input/desired output pairs and is split randomly into a training subset (to update synaptic weight values) and a validation subset (to avoid overfitting phenomenon by means of cross validation).
Downloads
References
[1] M. Jou, J. Mater. Process. Technol. 132 (2003) 102-113. doi:10.1016/S0924-0136(02)00409-0
[2] S. Agashe y H. Zhang, Weld. J. 82 (2003) 179s- 183s.
[3] E. Bayraktar, D. Kaplan y M. Grumbach, J. Mater. Process. Technol. 153-154 (2004) 80-86. doi:10.1016/j.jmatprotec.2004.04.020
[4] O. Martín, Tesis Doctoral, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Valladolid, 2004.
[5] N.S. Reddy, A.K. Prasada-Rao, M. Chakraborty y B.S. Murty, Mater. Sci. Eng. A 391 (2005) 131-140. doi:10.1016/j.msea.2004.08.042
[6] A. Jiahe, X. Jiang, G. Huiju, H. Yaohe Y X. Xishan, Mater. Sci. Eng. A 344 (2003) 318-322. doi:10.1016/S0921-5093(02)00444-6
[7] J.M. Vitek, Y.S. Iskander y E.M. Oblow, Weld. J. 79 (2000) 33s-40s.
[8] J.M. Vitek, Y.S. Iskander y E.M. Oblow, Weld. J. 79 (2000) 41s-50s.
[9] J.M. Vitek, S.A. David y C.R. Hinman, Weld. J. 82 (2003) 10s-17s.
[10] J.M. Vitek, S.A. David y C.R. Hinman, Weld. J. 82 (2003) 43s-50s.
[11] Y. Cho y S. Rhee, Weld. J. 81 (2002) 104s-111s.
[12] M.J. Kang, Y. Kim, S. Ahn y S. Rhee, Weld. J. 82 (2003) 238s-247s.
[13] R. Valentini, V. Colla y M. Vannucci, Rev. Metal. Madrid 40 (2004) 416-419.
[14] S. Cho, Y. Cho y S. Yoon, IEEE Trans. Neural Netw. 8 (1997) 874-882. doi:10.1109/72.595885 PMid:18255691
[15] C. Cantera, J. Jiménez, I. Varela y A. Formoso, Rev. Metal. Madrid 38 (2002) 243-248.
[16] J. Mcbride, S. Malinov y W. Sha, Mater. Sci. Eng. A 384 (2004) 129-137. doi:10.1016/j.msea.2004.05.072
[17] UNE-EN 10002-1:2002.
[18] ASTM, Norma E 112-88.
[19] G. Barrera, M.A. Fabián, M. Vélez Y L. Villaseñor, Rev. Metal. Madrid 37 (2001) 403-411.
[20] G. Barrera, M.A. Fabián, y C.A. Ugalde, Rev. Metal. Madrid 38 (2002) 163-172.
[21] P.T. Houldcroft, Tecnología de los Procesos de Soldadura, CEAC, Barcelona, España, 1990, pp. 166-191.
[22] F. Abad y J.M. Bisbe, Manual de Soldadura por Resistencia, Consejería de Industria, Comercio y Turismo de la Junta de Castilla y León, España, 2002, pp. 11-18 (capítulo I).
[23] R.B. Mccauley, M.P. Bennett, W.D. Bodary, G.C. Farrington, R.J. Gasser, W.W. Hurd, A.W. Schueler, T.W. Shearer, J.B. Silverberg, Resistance Spot Welding, T. Lyman (Ed.), Metals Handbook Eighth Edition Volume 6 Welding and Brazing, American Society for Metals, Metals Park, Ohio, E.U.A., 1971, pp. 401-424.
[24] J. Villafuerte, Weld. J. 82, 11 (2003) 50-52.
[25] J.M. Ruiz-Prieto y A. Vitores, Metales y Aleaciones No Férreas, Fundación Gómez-Pardo Servicio de Publicaciones, Madrid, España, 1976, pp. 51-54.
[26] J.M. Ruiz-Prieto y A. Vitores, Metales y Aleaciones No Férreas, Fundación Gómez-Pardo Servicio de Publicaciones, Madrid, España, 1976, pp. 175-193.
[27] O. Martín y S. Alonso, Mantenimiento 169 (2003) 38-43.
[28] G. Joseph, Copper: Its Trade, Manufacture, Use and Environmental Status, K.J.A. Kundig (Ed.), ASM International, Materials Park, OH, E.U.A., 1999, pp. 277-280.
[29] J.C. Harkness y A. Guha, Beryllium-Copper and Beryllium-Nickel Alloys, K. Mills, J.R. Davis, J.D. Destefani, D.A. Dieterich, G.M. Crankovic y H.J. Frissell (Eds.), Metals Handbook Ninth Edition Volume 9 Metallography and Microstructures, American Society for Metals, Metals Park, Ohio, E.U.A., 1985, pp. 392-398.
[30] B. Martín Del Brío y A. Sanz-Molina, Redes Neuronales y Sistemas Borrosos, RA-MA, Madrid, España, 1997, pp. 26-28.
[31] J. Krautkrämer y H. Krautkrämer, Ultrasonic Testing of Materials, Springer-Verlag, Fourth Edition, Berlin, Alemania, 1990, pp. 462 y 463.
[32] T. Mansour, Ultrasonic testing of spot welds in thin gage steel, P. McIntire (Ed.), Nondestructive Testing Handbook Second Edition Volume 7 Ultrasonic Testing, American Society for Nondestructive Testing, E.U.A., 1991, pp. 557-568.
[33] UNE-EN ISO 14272:2002.
[34] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice-Hall, Second Edition, Upper Saddle River, NJ, E.U.A., 1999, pp. 205-218.
[35] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, New York, E.U.A., 1995, pp. 343-345.
[36] S. Guessasma y C. Coddet, Acta Mater. 52 (2004) 5157-5164. doi:10.1016/j.actamat.2004.07.022
[37] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, New York, E.U.A., 1995, pp. 9-15.
[38] M.T. Hagan y M.B. Menhaj, IEEE Trans. Neural Netw. 5 (1994) 989-993. doi:10.1109/72.329697 PMid:18267874
[39] K.K. Tho, S. Swaddiwudhipong, Z.S. LIU y J. HUA, Model. Simul. Mater. Sci. Eng. 12 (2004) 1055-1062. doi:10.1088/0965-0393/12/5/019
[40] N. Selvakumar, P. Radha, R. Narayanasamy y M.J. Davidson, Model. Simul. Mater. Sci. Eng. 12 (2004) 611-620. doi:10.1088/0965-0393/12/4/004
[41] J. Zueco y F. Alhama, Rev. Metal. Madrid 41 (2005) 227-232.
[42] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, New York, E.U.A., 1995, pp. 290-292.
[43] D.P. Bertsekas, Nonlinear Programming, Athena Scientific, Second Edition, Belmont, MA, E.U.A., 1999, pp. 107.
[44] I.E. Dror, M. Zagaeski y C.F. Moss, Neural Netw. 8 (1995) 149-160. doi:10.1016/0893-6080(94)00057-S
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2006 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.