Recirculation effect of Chilean copper smelting dust with high impurities contents on the impurity distributions during smelting process

Authors

  • V. Montenegro Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University
  • H. Sano EcoTopia Science Institute, Nagoya University
  • T. Fujisawa EcoTopia Science Institute, Nagoya University

DOI:

https://doi.org/10.3989/revmetalm.0919

Keywords:

Minor elements distribution, Dust recirculation, Copper smelting dust

Abstract


Usually, dust generated during the copper smelting process by the Teniente Converter and the Flash Smelting Furnaces in Chile, contains high concentrations of copper, zinc, arsenic, antimony and other metals. In general, the dust is recirculated to the smelting process or it is directed to hydrometallurgical process for recovery and stabilization. However, in recent years the generation of dust has increased because of the degradation of the quality of the concentrate. In addition, the environmental regulations have become stricter. It is therefore desirable to understand the behavior of those elements, when the smelting process operates with recirculation of dust. In this study, the effect of dust recirculation to smelting process on the distribution among the matte, slag and gas phases was evaluated, as a function of matte grade, amount of recirculated dust, oxygen enrichment and temperature. It was found that the concentration in thematte of the impurities such as arsenic, antimony and bismuth, increased slightly with recirculation of dust. On the other hand, the concentration of lead and zinc depend of the direct recirculation of dust to the process. Additionally, it was found that high concentrations of arsenic and antimony in the dust may lead to the formation and precipitation of copper arsenates and other metals (speiss), which may generates important operational problems.

Downloads

Download data is not yet available.

References

[1] A. Valenzuela, J. Palacios, D. Cordero y M. Sanchez, Proc. Yazawa Int. Symp., C. Yamauchi, and F. Kongoli (Eds.)TMS, The Minerals, Metals & Materials Society, 2003, San Diego, CA, EE. UU., 2003, pp. 239-252.

[2] A. Yazawa, Proc. 28th Cong. IUPAC, Vancouver, Canadá, 1981, pp. 1-21.

[3] M. Maldini, J. Osorio, M. Mella y M. Herrera, Proc. Hydroprocess, Arturo Prat University, Iquique, Chile, 2006, pp. 402-414.

[4] S. Mikhail, A. Webster y J. Laflamme, Can. Metall. Q. 28 (1989) 241-249.

[5] T. Kho, D. Swinbourne y T. Lehner, Metall. Trans. B 37 (2006) 209-214. doi:10.1007/BF02693150

[6] R. Alvarado, B. Lectora, F. Hernandez y C. Moya, Copper 95, Vol. 4, W.J. Chen, C. Diaz, A. Luraschi and P.J. Mackey (Eds.), Canadian Institute of Mining,Metallurgy and Petroleum, Quebec, Canadá, 1995, pp. 83-101.

[7] K. Itagaki,Metall. Rev.MMIJ 3 (1986) 87-100.

[8] A. Yazawa y T. Azakami, Can. Metall. Q. 8 (1970) 257-261.

[9] A. Yazawa, S. Nakazawa y Y. Takeda, Proc. Advances in Sulfide Smelting, H. Y. Sohn, D. B. George y A. D. Zunkel (Eds.), AIME, 1983, pp. 99-117.

[10] K. Itagaki y A. Yazawa, Proc. Advances in Sulfide Smelting, H. Y. Sohn, D. B. George y A. D. Zunkel (Eds.), AIME, 1983, pp. 119-142.

[11] K. Itagaki y A. Yazawa, Proc. Advances in Sulfide Smelting, H. Y. Sohn, D. B. George y A. D. Zunkel (Eds.), AIME, 1983, pp. 705-722.

[12] HSC Chemistry v.5, Outokumpu Research Oy., Pori, Finland.

[13] R. Saarinen y I. Kojo, US Patent 6858175 (2005).

[14] A.Moyano, C. Caballero, R.Mackay, K. Itagaki y J. Font, Proc. Sohn Int. Symp., Vol. 7. F. Kongoli and R. Reddy (Eds.), TMS, 2006, pp. 105-113.

[15] T. Nozawa, Tesis de Máster en Ciencias de la Ingeniería, Escuela de Ingeniería, Universidad de Nagoya, Japón, 2007.

Downloads

Published

2010-02-28

How to Cite

Montenegro, V., Sano, H., & Fujisawa, T. (2010). Recirculation effect of Chilean copper smelting dust with high impurities contents on the impurity distributions during smelting process. Revista De Metalurgia, 46(1), 69–77. https://doi.org/10.3989/revmetalm.0919

Issue

Section

Articles