Microwave-assisted grinding of metallurgical coke


  • Esteban Ruisánchez Grupo de Microondas y Carbones para Aplicaciones Tecnológicas. Instituto Nacional del Carbón (INCAR), CSIC
  • Emilio J. Juárez-Pérez Grupo de Microondas y Carbones para Aplicaciones Tecnológicas. Instituto Nacional del Carbón (INCAR), CSIC
  • Ana Arenillas Grupo de Microondas y Carbones para Aplicaciones Tecnológicas. Instituto Nacional del Carbón (INCAR), CSIC
  • José M. Bermúdez Grupo de Microondas y Carbones para Aplicaciones Tecnológicas. Instituto Nacional del Carbón (INCAR), CSIC
  • José Ángel Menéndez Grupo de Microondas y Carbones para Aplicaciones Tecnológicas. Instituto Nacional del Carbón (INCAR), CSIC




Coke, Energy saving, Grindability, Microwave, Thermal shock


Metallurgical cokes are composed of graphitic carbon (s2p2) and different inorganic compounds with very different capacities to absorb microwave radiation. Moreover, due to the electric conductivity shown by the metallurgical cokes, microwave radiation produces electric arcs or microplasmas, which gives rise to hot spots. Therefore, when these cokes are irradiated with microwaves some parts of the particle experiment a rapid heating, while some others do not heat at all. As a result of the different expansion and stress caused by thermal the shock, small cracks and micro-fissures are produced in the particle. The weakening of the coke particles, and therefore an improvement of its grindability, is produced. This paper studies the microwave-assisted grinding of metallurgical coke and evaluates the grinding improvement and energy saving.


Download data is not yet available.


Babich, A., Yaroshevskii, S., Garc.a, L., Formoso, A., Cores, A., Isidro, A., Ferreira, S. (1996). Technological improvements in the pulverized coal injection process in the blast furnace. Rev. Metal. 32 (2), 103–116. http://dx.doi.org/10.3989/revmetalm.1996.v32.i2.921

Chenje, T.W., Simbi, D.J., Navara, E. (2003). Wear performance and cost effectiveness - A criterion for the selection of grinding media for wet milling in mineral processing operations. Miner. Eng. 16 (12), 1387–1390. http://dx.doi.org/10.1016/j.mineng.2003.08.009

Chenje, T.W., Simbi, D.J., Navara, E. (2004). Relationship between microstructure, hardness, impact toughness and wear performance of selected grinding media for mineral ore milling operations. Mater. Des. 25 (1), 11–18. http://dx.doi.org/10.1016/S0261-3069(03)00168-7

Church, R.H., Webb, W.E., Salsman, J.B. (1988). Dielectric properties of low-loss minerals. U. S. Bureau of Mines. Report of Investigations. Report 9194.

Didenko, A.N., Zverev, B.V., Prokopenko, A.V. (2005). Microwave fracturing and grinding of solid rocks by example of kimberlite. Doklady Physics 50 (7), 349–350. http://dx.doi.org/10.1134/1.2005358

Fitzgibbon, K.E., Veasey, T.J. (1990). Thermally assisted liberation - a review. Miner. Eng. 3 (1–2), 181–185. http://dx.doi.org/10.1016/0892-6875(90)90090-X

Güng.r, A., Atalay, .. (1998). Microwave processing and grindability. Innovations in Mineral and Coal Processing. Innovations in Mineral and Coal Processing: Proceedings of the 7th International Mineral Processing Symposium, Istanbul, 13–16.

Hearson, H.R. (1922). The Manufacture of Iron and Steel; E & F. N. Spon Ltd., London, UK.

Holman, B.W. (1926). Heat treatment as an agent in rock breaking. Trans. Inst. Min. Metall. 36, 219–234.

Kingman, S.W., Rowson, N.A. (1998). Microwave treatment of minerals - a review. Miner. Eng. 11 (11), 1081–1087. http://dx.doi.org/10.1016/S0892-6875(98)00094-6

Kingman, S.W., Vorster, W., Rowson, N.A. (2000). The influence of mineralogy on microwave assisted grinding. Miner. Eng. 13 (3), 313–327. http://dx.doi.org/10.1016/S0892-6875(00)00010-8

Kingman, S.W., Jackson, K., Cumbane, A., Bradshaw, S.M., Rowson, N.A., Greenwood, R. (2004). Recent developments in microwave assisted comminution. Int. J. Miner. Process. 74 (1–4), 71–83. http://dx.doi.org/10.1016/j.minpro.2003.09.006

Krestou, A., Panias, D. (2004). 1st International Conference on Advances in Mineral Resources Management and Environmental Geotechnology Hania, Greece, 215–220.

Lester, E., Kingman, S. (2004). The effect of microwave preheating on five different coals. Fuel 83 (14–15), 1941–1947. http://dx.doi.org/10.1016/j.fuel.2004.05.006

Lester, E., Kingman, S., Dodds, C. (2005). Increased coal grindability as a result of microwave pretreatment at economic energy inputs. Fuel 84 (4), 423–427. http://dx.doi.org/10.1016/j.fuel.2004.09.019

Lester, E., Kingman, S., Dodds, C., Patrick, J. (2006). The potential for rapid coke making using microwave energy. Fuel 85 (14–15), 2057–2063. http://dx.doi.org/10.1016/j.fuel.2006.04.012

Marland, S., Han, B., Merchant, A., Rowson, N. (2000). The effect of microwave radiation on coal grindability. Fuel 79 (11), 1283–1288. http://dx.doi.org/10.1016/S0016-2361(99)00285-9

Menéndez, J.A., Arenillas, A., Fidalgo, B., Fern.ndez, Y., Zubizarreta, L., Calvo, E.G., Berm.dez, J.M. (2010). Microwave heating processes involving carbon materials. Fuel Process. Technol. 91 (1), 1–8. http://dx.doi.org/10.1016/j.fuproc.2009.08.021

Mular, A.L., Bhappu, R.B. (1982). Dise-o de plantas de proceso de minerales, Madrid.

Schubert, U.S., Hoogenboom, R., Wilms, T.F.A., Erdmenger, T. (2009). Microwave-assisted chemistry: a closer look at heating efficiency. Aust. J. Chem. 62 (3), 236–243. http://dx.doi.org/10.1071/CH08503

Stoltze, S. (2000). The use of pet coke in cement manufacturing plants: Presentation of industrial cases of grinding and firing of pet coke. 11th International Cement Conference Hammamet, Tunisie, 9.

Wills, B.A., Napier-Munn, T. (2006). Wills mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery. Butterworth-Heinemann, 2006.



How to Cite

Ruisánchez, E., Juárez-Pérez, E. J., Arenillas, A., Bermúdez, J. M., & Menéndez, J. Ángel. (2014). Microwave-assisted grinding of metallurgical coke. Revista De Metalurgia, 50(2), e013. https://doi.org/10.3989/revmetalm.013